Estelle Street Development City of Greater Sudbury

Traffic Impact Study for Tulloch Engineering Inc.

> Type of Document: Final Report

> > Project Number: JDE – 20112

Date Submitted: March 5th, 2021

John Northcote, P.Eng. Professional License #: 100124071

Legal Notification

This report was prepared by JD Northcote Engineering Inc. for the account of Tulloch Engineering Inc.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. **JD Northcote Engineering Inc.** accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

Executive Summary

This report summarizes the traffic impact study prepared for the proposed residential development located on the west side of Estelle Street midblock between Bancroft Drive and Rheal Street, in the City of Greater Sudbury [City]. The report assesses the impact of traffic related to the development on the adjacent roadway and provides recommendations to accommodate this traffic in a safe and efficient manner.

The proposed development is anticipated to consist of three 5-storey buildings with a total of 120 units and 59 townhouse units.

The proposed development will include two full-movement access driveways onto Estelle Street [North Access & South Access].

The scope of this analysis includes a review of the following intersections:

- Levesque Street / Kingsway;
- Moonlight Avenue / Kingsway;
- Levesque Street / Bancroft Drive;
- Moonlight Avenue & Moonlight Beach Road / Bancroft Drive;
- Estelle Street / Bancroft Drive;
- Estelle Street / North Access; and
- Estelle Street / South Access.

Conclusions

- 1. The proposed development is expected to generate a total of 73 AM and 90 PM peak hour trips.
- 2. An intersection operation analysis was completed at the study area intersections, using the existing (2021) and background (2024 & 2029) traffic volumes, with the adjacent development traffic. This enabled a review of existing and future traffic deficiencies that would be present without the influence of the proposed development. The following improvements are recommended prior to build-out of the Kingsway Entertainment District and Arena / Event Centre and future business park development:

Background (2024) Traffic Volumes

- Street 'C' & Levesque Street / Kingsway
 - o Street 'C' be constructed with a left, through and right turn lane configuration;
 - The southbound left turn is constructed with a 75 metre storage length and 55 metre taper length;
 - Adjust eastbound and northbound signal heads to accommodate a protected and permissive left turn signal phase; and
 - Adjust and repaint northbound lane pavement markings to provide 100 metre parallel length and 30 metre taper length for the northbound left turn lane.
- 3. An estimate of the amount of traffic that would be generated by the Subject Site was prepared and assigned to the study area streets and intersections.

- 4. An intersection operation analysis was completed under total (2024 & 2029) traffic volumes with the proposed development operational at the study area intersections. No further infrastructure improvements were required as a result of the analysis.
- 5. A supplementary analysis was completed to assess the recommendation for the eastbound double left turn lane at the Street 'C' & Levesque Street / Kingsway intersection, as recommended in the Kingsway Entertainment District and Arena / Event Centre Traffic Impact Study. Based on our review, there are no issues with the recommendation for this improvement.
- 6. The North Access and South Access will operate efficiently as a full-movement access driveways, with one-way stop control for eastbound movements. No lane improvements are recommended on Estelle Street at the North Access and South Access. The above-noted configuration will provide the necessary capacity to service the proposed development.
- 7. The sight distance available for the proposed North Access and South Access meet the minimum stopping sight distance requirements.
- 8. The Developer is committed to providing clear messaging in the sales agreement, which will inform tenants that additional parking is not guaranteed and regular enforcement by the property manager will occur to ensure there is no misuse of parking within the site.
- 9. Based on our analysis of the residential visitor proxy parking data and the resident parking survey, the proposed parking breakdown, summarized in Table A will provide the necessary capacity to support the proposed.

Unit Type	Proposed Units	Resident Parking	Visitor Parking	Total Parking
Residential Dwelling,	143	130 spaces	21 spaces	151 spaces
Multiple		(0.91 sp./unit)	(0.15 sp./unit)	•
Residential Dwelling,	36	36 spaces	_	36
Townhouse	50	(1 sp./unit)	-	spaces
TOTAL	179	166 spaces	21 spaces	187 spaces
Accessible	2 spaces plus greater than 1	7 spaces		

Table A – Recommended Minimum Parking Supply

- 10. Construction of a sidewalk is recommended on the west side of Estelle Street extending from Bancroft Drive to Rheal Street, to improve pedestrian connectivity.
- 11. In summary, the proposed development will not cause any operational issues and will not add significant delay or congestion to the local roadway network; furthermore, the above-noted parking supply will provide the necessary capacity to accommodate the typical peak parking demand for the proposed development.

Table of Contents

1	Introduction1
1.1	Background1
1.2	Study Area1
1.3	Study Scope and Objectives
1.4	Horizon Year and Analysis Periods
2	Information Gathering
2.1	Street and Intersection Characteristics
2.2	Local Transportation Infrastructure Improvements
2.3	Transit Access
2.4	Other Developments within the Study Area7
	2.4.1 KED & Future Business Park Development Traffic Assignment - PM Peak Hour .7
	2.4.2 KED & Future Business Park Development Traffic Assignment – AM Peak Hour 7
2.5	Background Traffic Growth16
2.6	Traffic Counts
2.7	Horizon Year Traffic Volumes
3	Intersection Operation with Proposed Development21
3.1	Intersection Capacity Analysis Criteria21
3.2	Existing (2021) Intersection Operation
3.3	Background (2024) Intersection Operation
3.4	Background (2029) Intersection Operation
4	Proposed Development Traffic Generation and Assignment29
4.1	Traffic Generation
4.2	Traffic Assignment
4.3	Total Horizon Year Traffic Volumes with the Proposed Development
5	Intersection Operation with Proposed Development
5.1	Total (2024) Intersection Operation
5.2	Total (2029) Intersection Operation
5.3 Lanes	Supplementary Analysis - Street 'C' & Levesque Street / Kingsway Eastbound Double Left Turn 39
5.4	Sight Distance Review
5.5	Site Access
6	Parking Review

6.1	Municipal By-law Requirement Parking40					
6.2	Proxy Parking Counts					
6.3	Residentia	I Visitor Parking	42			
	6.3.1	Residential Visitor Proxy Survey Data	42			
	6.3.2	Analysis - Resident Visitor Parking	42			
6.4	Apartment Resident Parking					
	6.4.1	Apartment Resident Proxy Survey Data	42			
	6.4.2	Analysis – Apartment Resident Parking	42			
6.5	Recommen	nded Minimum Parking Supply	43			
6.6	Overflow Parking Control					
7	Transport	ation Demand Management	44			
8	Summary		45			

List of Tables

9
9
16
21
22
24
25
27
29
35
37
39
41
41
42
42
43

List of Figures

Figure 1 – Proposed Site Location and Study Area	2
Figure 2 – Existing Lane Configuration within Study Area	
Figure 3 – KED (Arena) Traffic Assignment	11
Figure 4 – KED (Casino) Traffic Assignment	
Figure 5 – KED (Hotel) Traffic Assignment	13
Figure 6 – Future Business Park Development Traffic Assignment	
Figure 7 – Total Adjacent Development Traffic Assignment	15
Figure 8 – Existing (2021) Traffic Volumes	
Figure 9 – Background (2024) Traffic Volumes	19

Estelle Street Development Tulloch Engineering Inc. JDE-20112 Date: March 5th, 2021

Figure 10 – Background (2029) Traffic Volumes	20
Figure 11 – Subject Site Traffic Assignment	
Figure 12 – Total (2024) Traffic Volumes	
Figure 13 – Total (2029) Traffic Volumes	

List of Appendices

- APPENDIX A Site Plan
- APPENDIX B Adjacent Development Excerpts
- APPENDIX C Traffic Count Data
- APPENDIX D Synchro Analysis Output Existing Traffic Volumes
- APPENDIX E Synchro Analysis Output Background Traffic Volumes
- APPENDIX F Synchro Analysis Output Total Traffic Volumes
- APPENDIX G MTO Left Turn Analysis
- APPENDIX H OTM Signal Justification Sheets
- APPENDIX I Parking Survey Data

1 Introduction

1.1 Background

Tulloch Engineering Inc. [Tulloch] is the lead consultant managing the proposed residential development of the subject site, located on the west side of Estelle Street midblock between Bancroft Drive and Rheal Street, in the City of Greater Sudbury [City]. The proposed development is anticipated to consist of three 5-storey buildings with 120 unit and 59 townhouse units.

The proposed development will include two full-movement access driveways onto Estelle Street [North Access & South Access].

Tulloch has retained **JD Northcote Engineering Inc.** [JD Engineering] to prepare this traffic impact study in support of the proposed development.

1.2 Study Area

Figure 1 illustrates the location of the subject site and study area intersections in relation to the surrounding area. The Draft Plan by Tulloch is attached in **Appendix A**.

The subject site is bound by Estelle Street to the east and existing residential units to the north, west and south.

Through our consultation with the City, the following intersections will be analysed as part of the study:

- Levesque Street / Kingsway;
- Moonlight Avenue / Kingsway;
- Levesque Street / Bancroft Drive;
- Moonlight Avenue & Moonlight Beach Road / Bancroft Drive;
- Estelle Street / Bancroft Drive;
- Estelle Street / North Access; and
- Estelle Street / South Access.

Figure 1 – Proposed Site Location and Study Area

1.3 Study Scope and Objectives

The purpose of this study is to identify the potential impacts to traffic flow at the site access and on the surrounding roadway network. The study analysis includes the following tasks:

- Determine existing traffic volumes and circulation patterns;
- Estimate future traffic volumes if the proposed development was not constructed, including the impact of additional proposed developments in the area;
- Complete level-of-service [LOS] analysis of horizon year (without the proposed development) traffic conditions and identify operational deficiencies;
- Estimate the amount of traffic that would be generated by the proposed development and assign to the roadway network;
- Complete LOS analysis of horizon year (with the proposed development) traffic conditions and identify additional operational deficiencies;
- Identify improvement options to address operational deficiencies;
- Calculate lane improvements for the Site Access based on the Transportation Association of Canada [TAC] and Ontario Ministry of Transportation [MTO] guidelines;
- Review the proposed configuration of the Site Access;
- Justify the proposed parking supply in a parking assessment; and
- Document findings and recommendations in a final report.

1.4 Horizon Year and Analysis Periods

Traffic scenarios for the existing and horizon (2024 & 2029) year were selected for analysis of traffic operations in the study area. The weekday morning [AM] and weekday afternoon [PM] peak hours have been selected as the analysis periods for this study.

2 Information Gathering

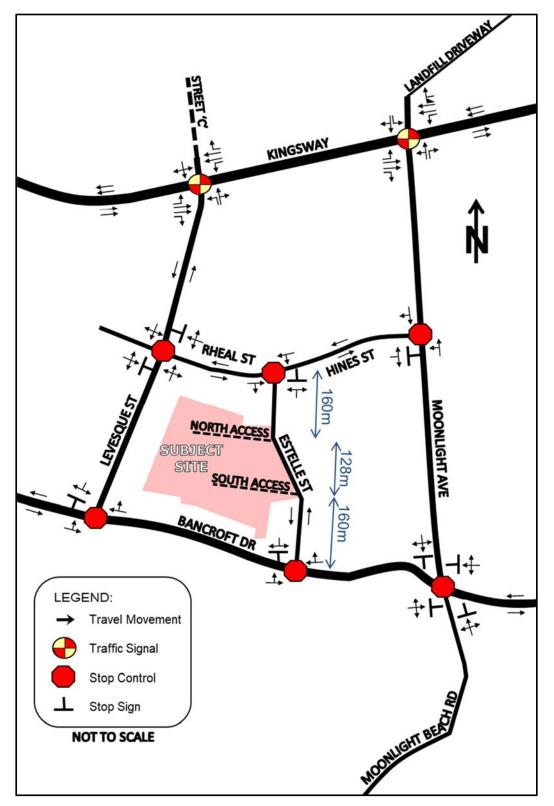
2.1 Street and Intersection Characteristics

Bancroft Drive (Regional Road 67) is a two-lane secondary arterial road with an urban cross-section, sidewalk on both sides of the road and bike lanes on both sides of the road in the study area. Bancroft Drive has an unposted (assumed) speed limit of 60 km/h and is under jurisdiction of the City.

Kingsway (Regional Road 55) is a five-lane primary arterial road with an urban cross-section. Kingsway has a multi-use path along both sides of the road west of Levesque Street. East of Levesque Street, the north side of Kingsway has a multi-use path extending 43 metres east of Levesque Street, where it transitions into a paved shoulder. East of Levesque Street, the south side of Kingsway has a gravel pathway. Kingsway has a posted speed limit of 80 km/h and is under jurisdiction of the City.

Moonlight Avenue (Regional Road 74) is a two-lane collector road with an urban cross-section and a sidewalk along the east side of the road and bike lanes along both sides of the road. Moonlight Avenue has a posted speed limit of 50 km/h and is under jurisdiction of the City.

Levesque Street is a two-lane collector road with an urban cross-section and a sidewalk along the east side of the road. Levesque Street has a posted speed limit of 50 km/h and is under jurisdiction of the City.


Estelle Street is a two-lane local road with a rural cross-section and gravel shoulders. Estelle Street has an unposted (assumed) speed limit of 50 km/h and is under jurisdiction of the City.

Moonlight Beach Road is a two-lane local road with a rural cross-section and gravel shoulders. Moonlight Beach Road has an unposted (assumed) speed limit of 50 km/h and is under jurisdiction of the City.

The existing intersection lane configuration within the study area is illustrated in Figure 2.

2.2 Local Transportation Infrastructure Improvements

Based on a review of the City's Transportation Master Plan (2016) [TMP] and 2020 Capital Budget, there are no planned road improvements in the study area.

The City's TMP notes a potential extension of the north leg of the Levesque Street / Kingsway intersection and connect onto Hillsend Road, along with other connections via this extension. This improvement is noted as part of "Potential Roads for Future Consideration (after 2031)" and has not been included in this study. It is noted the north leg of Levesque Street / Kingsway intersection will be an access roadway to the adjacent developments noted in Section 2.4.

The proposed Kingsway Entertainment District and Arena / Event Centre [KED] and future business park development are located northwest of the Levesque Street / Kingsway intersection; further details are provided in Section 2.4. Dillon Consulting Ltd. completed a traffic impact study for the KED (dated December 2017) [KED TIS] with an addendum completed to address peer reviewed comments (dated March 2018) [KED TIS Addendum]. The KED TIS recommended a number of improvements at the Street 'C' & Levesque Street / Kingsway intersection; the following improvements were recommended at the Street 'C' & Levesque Street / Kingsway intersection by the 2022 horizon year with the build-out of the KED and future business park development:

- Construct the north leg of the intersection with a left, through and right turn lane configuration. The southbound left turn is recommended with a 75 metre storage length.
- Widen Kingsway to accommodate an eastbound double left turn lane and provide protected eastbound left turn phasing to accommodate this improvement.
- Extend westbound right turn storage to permit 90 metres of storage length.

For the purpose of our analysis, we have assumed the Street 'A' configuration noted above. To assess the impact of the proposed development in our report, we have not applied the eastbound double left turn lane and westbound right turn lane storage length extension in the future horizon years; however, we have completed a supplementary analysis in the critical total (2029) scenario at the Street 'C' & Levesque Street / Kingsway intersection with the eastbound double left turn lane in Section 5.3.

2.3 Transit Access

The City's bus service [GOVA Transit] provides two bus routes within the study area. The Route 10 (Lac Minnow Lake) bus route provides connections between the local community and the downtown core. The Route 103 (Coniston) bus route provides connections within the Conniston community.

Route 10 operates from 06:15 - 23:55 on weekends with peak hour service every 30 minutes on weekdays and from 07:15 - 23:15 on the weekend with service every hour and a half. The closest bus stop for Route 10 is located at the northwest corner of the Bancroft Drive / Estelle Street intersection, approximately 170 metres from the subject site.

Route 103 operates from 06:35 – 23:05 on weekdays with hourly service from 07:30 – 22:30 on the weekend with service every hour and a half. The closest westbound bus stop is located at the northwest corner of the Bancroft Drive / Estelle Street intersection, approximately 170 metres from the subject site. The closest eastbound bus stop is located at the southeast corner of the Levesque Street / Kingsway intersection, approximately 800 metres from the subject site.

2.4 **Other Developments within the Study Area**

Based on correspondence with the City's planning department, the Kingsway Entertainment District and future business park development is the only other development that would impact traffic in the study area.

1916596 Ontario Ltd. is proposing the Kingsway Entertainment District and Arena / Event Centre located northwest of the Levesque Street / Kingsway intersection. The KED is anticipated to include an outdoor plaza and a sporting venue with 5,800 seats and capacity for 6,500 spectators for concerts, a casino (780 gaming positions) with ancillary restaurant space and 200-room hotel with meeting space. The KED is located within a previously approved industrial subdivision, with an additional 93.67 acres available for a future business park development. The KED will have two full-movement access intersections onto Kingsway, an access on the north leg of the Levesque Street / Kingsway intersection [Street 'C'] and another access west of this intersection.

Based on correspondence with the City and a review of information available online, the KED is pending LPAT approvals with no timeline for build-out. As noted previously, Dillon Consulting Ltd. completed the KED TIS and KED TIS Addendum to address peer reviewed comments. The KED TIS analyzed traffic for the weekday PM, Saturday and Friday Pre (18:00 – 19:00) / Post (22:00 – 23:00) Game peak hours. The Friday Pre / Post Game peak hours are based on the anticipated timing of scheduled events for the arena.

The KED TIS assumes all components of the KED and the future business park development to be built-out by 2020 and analyzed the 2017 and 2022 horizon years. For the purposes of our study we have assumed all components of the KED and the future business park development to be built-out by 2024, to be conservative.

In Sections 2.4.1 and 2.4.2, we have estimated the traffic generated by the KED and future business park development based on information provided in the KED TIS and KED TIS Addendum.

2.4.1 KED & Future Business Park Development Traffic Assignment - PM Peak Hour

For the purpose of our analysis, the traffic assignment for the KED and future business park development in the PM peak hour was based on the KED TIS (excerpts provided in **Appendix B**).

2.4.2 KED & Future Business Park Development Traffic Assignment – AM Peak Hour

The traffic generation and assignment for the arena, casino and hotel component of the KED and future business park development in the AM peak hour was estimated based on the methodology and information provided in the KED TIS and KED TIS Addendum.

2.4.2.1 Arena

The KED TIS noted that the arena component of the KED would generate most traffic during pre / post scheduled events in the evening; however, the site will generate some traffic during non-event times as the arena may be rented during these times. The KED TIS estimated the traffic during the PM peak hour based on assumptions and proxy site traffic counts at another arena.

During the PM peak hour, the KED TIS estimated there will be 15 inbound and 20 outbound trips (excerpts provided in **Appendix B**). For the purposes of this study, we have assumed the traffic generation during the AM peak hour will be the inverse of trips estimated during the PM peak hour.

 Table 1 in Section 2.4.2.5 illustrates the traffic generation for the arena component in the AM peak hour.

The traffic distribution for the arena component of the KED is illustrated in **Table 2** of Section 2.4.2.6 which was obtained from the KED TIS.

The traffic assignment for the arena component in the KED is illustrated in **Figure 3**.

2.4.2.2 Casino

The KED TIS estimated traffic generated by the casino component of the KED by 24-hour traffic data (taken in 15 minute intervals) obtained at the Point Edward Casino [PEC] proxy site. The PEC proxy site has 576 gaming positions and includes restaurant space. The traffic data for the proxy site was obtained on Thursday, September 1, 2017 and is provided in the KED TIS (excerpts in **Appendix B**).

Based on the traffic data for the proxy site, the following rates were calculated:

- 0.22 trips per gaming position during the weekday AM peak hour; and
- 0.18 trips per gaming position during the weekday AM peak hour.

The traffic generation for the casino component of the KED in the AM peak hour were estimated based on the above noted rates and is illustrated in **Table 1** in Section 2.4.2.5.

The traffic distribution for the casino component of the KED is illustrated in **Table 2** of Section 2.4.2.6, which was obtained from the KED TIS.

The traffic assignment for the casino component in the KED is illustrated in Figure 4.

2.4.2.3 Hotel & Business Park

The traffic generated by the hotel component of the KED and future business park development were estimated in the PM peak hour of the KED TIS, based on the Institute of Transportation Engineers *Trip Generation Manual*. For the purposes of this study we have estimated the trips generated by the hotel component of the KED and future business park development in the AM peak hour based on the Institute of Transportation Engineers [ITE] *Trip Generation Manual* (10th Edition) [ITE Trip Generation Manual]. The following ITE land uses have been applied to estimate the traffic from the proposed development:

- ITE land use 310 (Hotel) General Urban / Suburban Setting
- ITE land use 770 (Business Park) General Urban / Suburban Setting

The estimated trip generation of the proposed development is illustrated in **Table 1** in Section 2.4.2.5.

For the hotel component of the KED, the AM peak hour traffic generation for the hotel is not expected to exactly align with the AM and PM peak hour in the traffic counts; consequently, we have applied the peak hour of adjacent street traffic values provided in the ITE Trip Generation Manual.

For the business park, the peak hour of generation was applied as peak hour of adjacent street traffic data is not available for this land use. The KED TIS used an acre per trip traffic generator to generate traffic for the business park; however, the most recent version of the ITE trip generation manual is the ITE Trip Generation Manual (10th Edition), which does not have this traffic generation rate. The KED TIS Addendum provided justification that with the proposed size of the future business park development (93.67 acres), this will correlate to the business park employing approximately 4,000

employees; this was determined by comparing ITE trip generation data that was used in the KED TIS (excerpts provided in **Appendix B**). For the purposes of this report, we have assumed the business park will employ 4,000 employees and have used the employee per trip rate in the ITE Trip Generation Manual to generate traffic in the AM peak hour for the future business park development.

The traffic distribution for the hotel component of the KED and future business park development is illustrated in **Table 2** of Section 2.4.2.6 which was obtained from the KED TIS.

The traffic assignment for the hotel component of the KED and future business park development is illustrated in **Figures 5** and **6** respectively.

2.4.2.4 Internal Capture Considerations

The KED TIS considered internal capture considerations for the components in the KED and future business park development. Based on our review of the KED TIS and KED TIS Addendum assumptions and justifications, no internal capture reductions were applied.

2.4.2.5 Traffic Generation Summary

Table 1 illustrates the AM peak hour traffic generation for the arena, casino and hotel component of the KED and the future business park development, using the methodology noted above.

Table 1 – Estimated Traffic Generation of the KED and Future Business Park Development

	•	AM Peak Hour				
Land Use	Size	IN	OUT	TOTAL		
Arena*	5,800 seats	20	15	35		
Casino**	780 gaming positions	174	140	314		
Hotel ITE Land Use: 310	200 rooms	55	39	94		
KED TOTAL TRIP	GENERATION	249	194	443		
Business Park ITE Land Use: 770	4,000 employees***	1395	246	1641		
TOTAL TRIP G	1644	440	2084			

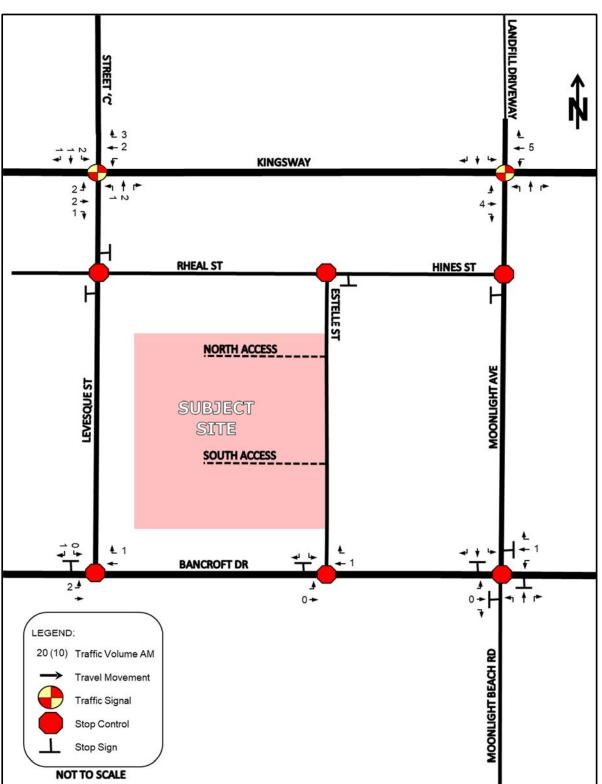
* The traffic generation for the arena was based on assumptions and proxy site traffic counts at another arena.

** The traffic generation for the casino is based on traffic counts obtained from a proxy site noted in Section 2.4.2.2. *** The estimation for the number of employees at the business park is based on a conversion of the overall size of the business park lands and number of employees based on ITE trip generation data noted in Section 2.4.2.3.

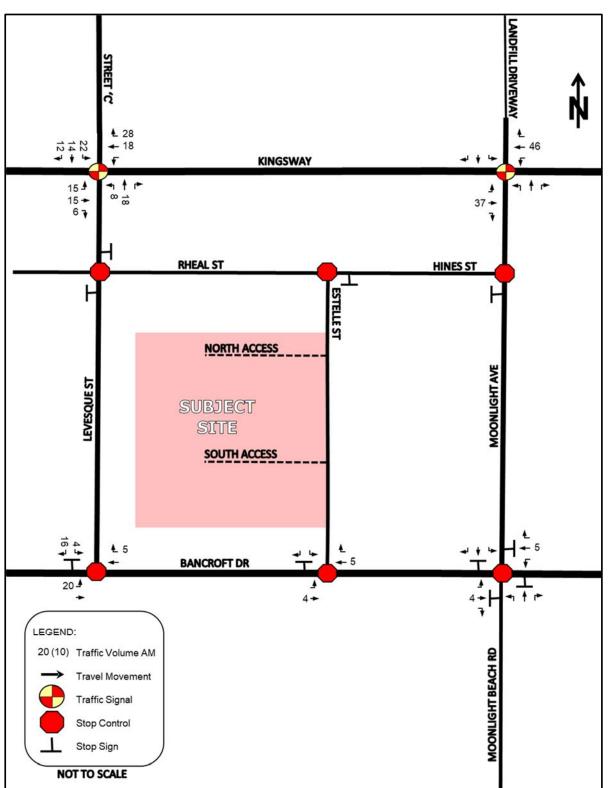
2.4.2.6 **Traffic Distribution**

The KED TIS provided the traffic distribution for the arena, hotel and other (casino and business park) traffic generators and have been used as the traffic distribution for the traffic generated above. **Table 2** illustrates the traffic distribution for the adjacent developments.

Travel Direction (to / from)	Arena	Hotel	Other (Hotel & Business Park)
West via Kingsway	62.0%	35.0%	59.0%
East via Kingsway	26.0%	65.0%	26.5%
West via Bancroft Drive	9.0%	0.0%	11.5%
East via Bancroft Drive	3.0%	0.0%	3.0%
TOTAL	100%	100%	100%


Table 2 – Proposed Development Traffic Distribution

The distribution of traffic to each access driveway for the KED and future business park development has been based on the proposed parking layout. As noted in Section 2.2, there is a potential road extension of Street 'C' to Hillsend Road north of the study area; however, this improvement has not been included in this report, as this is planned as a post 2031 road project.


Figure 7 illustrates the total adjacent traffic assignment in the AM and PM peak hour.

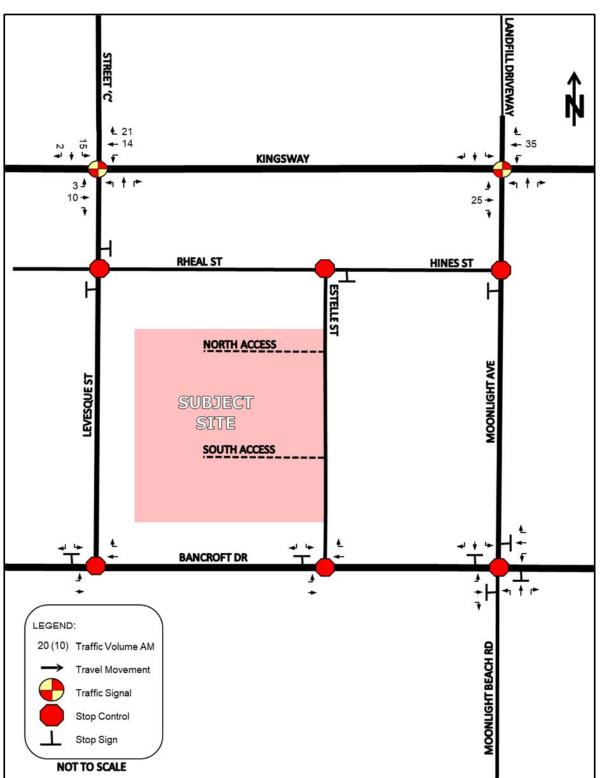

Figure 3 – KED (Arena) Traffic Assignment

Figure 5 – KED (Hotel) Traffic Assignment

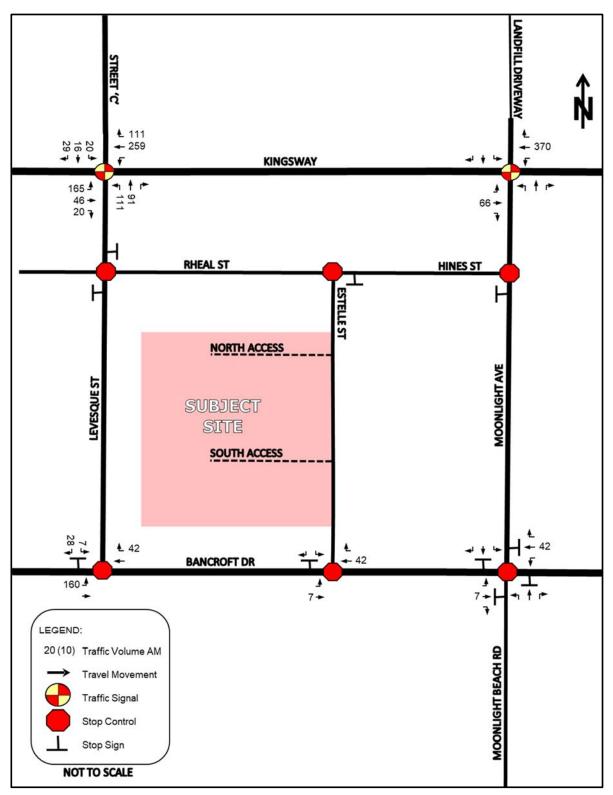
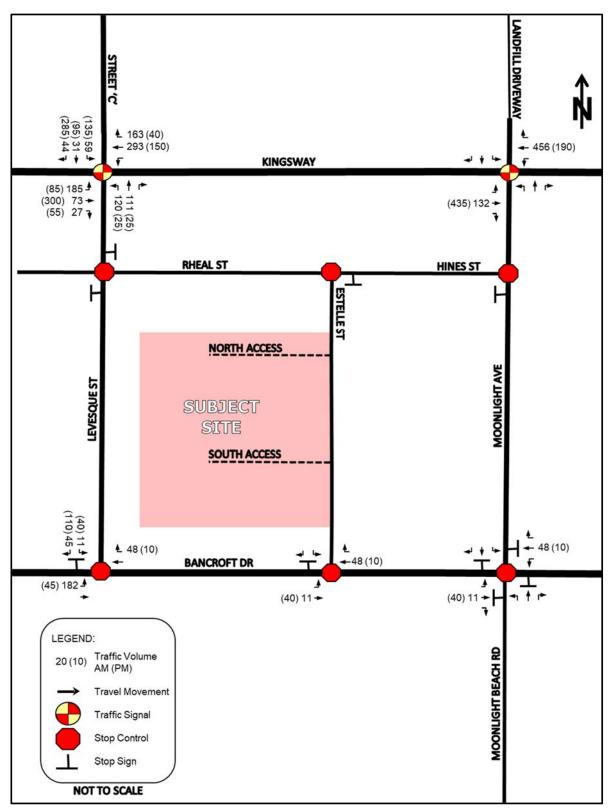



Figure 6 – Future Business Park Development Traffic Assignment

2.5 Background Traffic Growth

Based on correspondence with the City a 1.5% background traffic growth rate was applied. The 1.5% background traffic growth rate was applied on Bancroft Drive, Kingsway, Levesque Street, Moonlight Avenue and Moonlight Beach Road. Based on the surrounding development, no background traffic growth was applied on Estelle Street.

2.6 Traffic Counts

Detailed turning movements traffic and pedestrian counts were commissioned by JD Engineering at the Estelle Street / Bancroft Drive intersection. Detailed turning movements traffic and pedestrian counts were obtained at all other intersections from the City. **Table 3** summarizes the traffic count data collection information.

Intersection (N-S Street / E-W Street)	Count Date	AM Peak Hour	PM Peak Hour	Source
Levesque Street / Kingsway	Friday, March 24 th 2017	07:30 – 08:30	16:15 – 17:15	City
Moonlight Avenue / Kingsway	Wednesday, April 12 th 2017	07:30 – 08:30	16:15 – 17:15	City
Levesque Street / Bancroft Drive	Friday, March 31 st 2017	07:30 – 08:30	12:00 – 13:00*	City
Moonlight Avenue & Moonlight Beach Road / Bancroft Drive	Wednesday, April 12 th 2017	07:30 – 08:30	16:15 – 17:15	City
Estelle Street / Bancroft Drive	Wednesday November 18 th , 2020	07:15 – 08:15	16:00 - 17:00	JD Eng.**

Table 3 - Traffic Count Data

* Traffic counts at the Levesque Street / Bancroft Drive intersection were completed between 06:00 - 13:00.

** Traffic counts were completed by Ontario Traffic Inc. on behalf of JD Engineering.

Detailed traffic count data can be found in Appendix C.

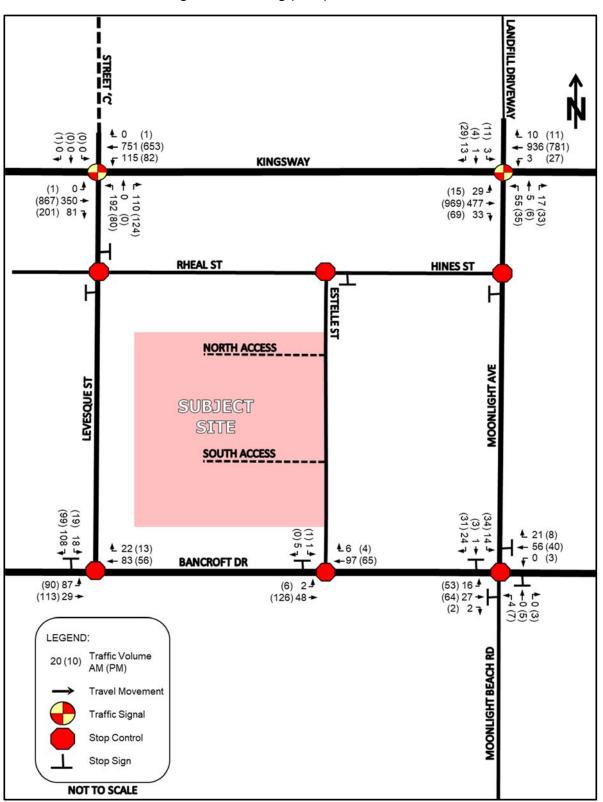
The traffic counts at the Levesque Street / Bancroft Drive intersection were completed between 06:00 - 13:00; consequently, traffic counts in the afternoon peak hour were not available. We have estimated the traffic at the intersection in the PM peak hour by adjusting the midday peak hour traffic volumes. A midday – PM peak hour adjustment factor was calculated based on the traffic counts obtained at the Moonlight Avenue & Moonlight Beach Road / Bancroft Drive intersection. By comparing the midday peak hour (12:00 - 13:00) and PM peak hour (16:15 - 17:15) traffic volumes, the midday peak hour volumes were 35% lower than the PM peak hour; consequently, we have increased the traffic at the Levesque Street / Bancroft Drive intersection in the PM peak hour by 35%. The eastbound through traffic volumes were also adjusted (increased) at the Levesque Street / Bancroft Drive intersection to match the west leg of the Estelle Street / Bancroft Drive intersection.

As a result of the physical distancing requirements associated with COVID-19, the traffic counts at the Estelle Street / Bancroft Drive intersection reflect lower than expected traffic under normal conditions. Based on a comparison of the traffic volumes on Bancroft Drive at the Estelle Street / Bancroft Drive intersection (Post-COVID) and the Levesque Street / Bancroft Drive and Moonlight Avenue & Moonlight Beach Road / Bancroft Drive intersections (Pre-COVID), a 24% and 11% decrease in traffic volumes was observed in the AM and PM peak hour, respectively. Consequently, we have increased traffic at the Estelle Street / Bancroft Drive intersection by the same factor.

The peak hours of traffic generation for all other peak hours at the study area intersections generally aligned with the anticipated peak hour of traffic generation by the proposed development.

To determine the equivalent existing (2021) traffic volumes, the background traffic growth rate noted in Section 2.5 was applied to the traffic counts completed in 2017 and 2020.

Heavy vehicle percentages and pedestrian crossings from the traffic count data have also been included in the Synchro analysis.


Figure 8 illustrates the existing (2021) AM and PM peak hour traffic volumes in the study area.

2.7 Horizon Year Traffic Volumes

In addition to the adjacent development traffic volumes (outlined in Section 2.4), the background (2024 & 2029) traffic volumes were estimated for the AM and PM peak hour by applying the background traffic growth rates discussed in Section 2.5 to the existing traffic volumes.

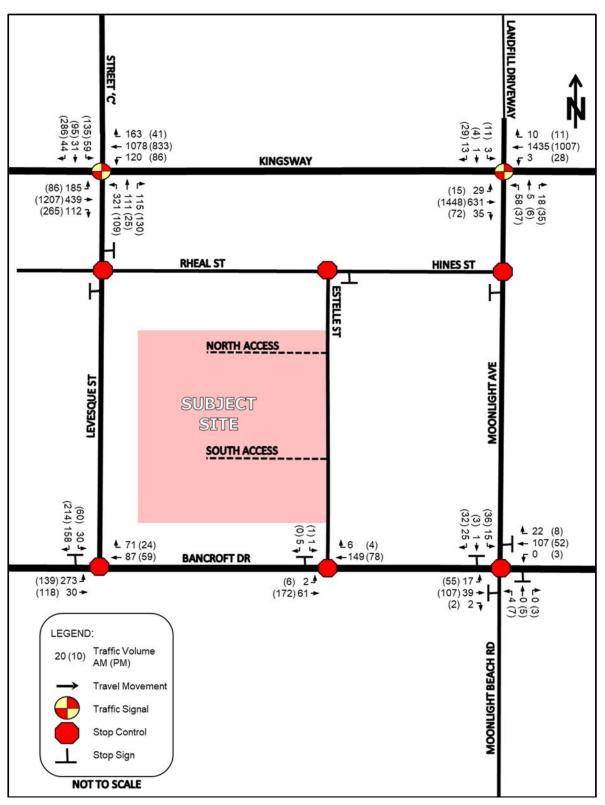

Figures 9 and 10 illustrates the background (2024 & 2029) AM and PM peak hour traffic volumes respectively, in the study area.

Figure 8 – Existing (2021) Traffic Volumes

Figure 9 – Background (2024) Traffic Volumes

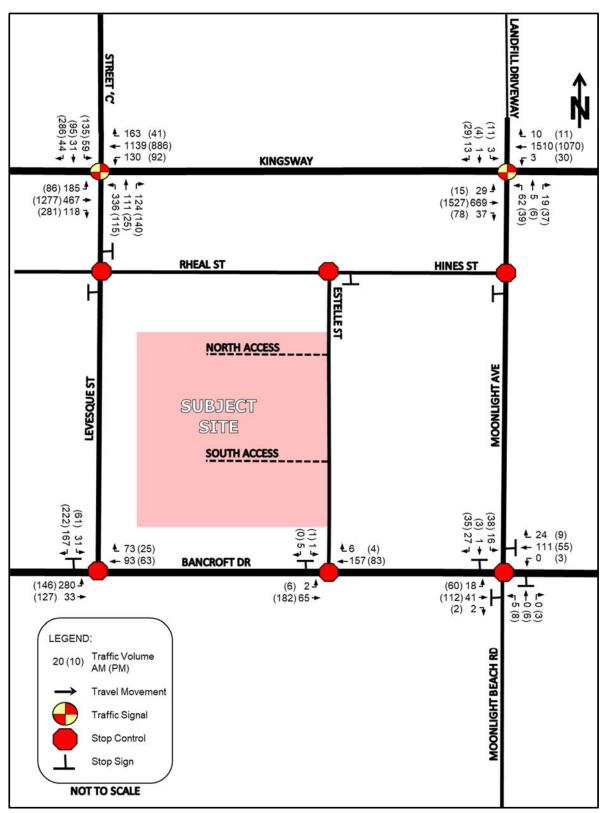


Figure 10 – Background (2029) Traffic Volumes

3 Intersection Operation with Proposed Development

3.1 Intersection Capacity Analysis Criteria

Intersection performance was measured using the traffic analysis software, Synchro 10, a deterministic model that employs Highway Capacity Manual and Intersection Capacity Utilization methodologies for analysing intersection operations. These procedures are accepted by provincial and municipal agencies throughout North America.

Synchro 10 enables the study area to be graphically defined in terms of streets and intersections, along with their geometric and traffic control characteristics. The user is able to evaluate both signalized and unsignalized intersections in relation to each other, thus not only providing level of service for the individual intersections, but also enabling an assessment of the impact the various intersections in a network have on each other in terms of spacing, traffic congestion, delay, and queuing.

Individual turning movements with a volume-to-capacity [V/C] ratio of 0.85 or greater are considered to be critical movements and have been highlighted in the LOS tables.

The intersection operations were also evaluated in terms of the LOS. LOS is a common measure of the quality of performance at an intersection and is defined in terms of vehicular delay. This delay includes deceleration delay, queue move-up time, stopped delay, and acceleration delay. LOS is expressed on a scale of A through F, where LOS A represents very little delay (i.e. less than 10 seconds per vehicle) and LOS F represents very high delay (i.e. greater than 50 seconds per vehicle for a stop sign controlled intersection and greater than 80 seconds per vehicle for a signalized intersection).

The LOS criteria for signalized and stop sign controlled intersections are shown in **Table 4.** A description of traffic performance characteristics is included for each LOS.

		Control Delay (seconds per vehicle)			
LOS	LOS Description	Signalized Intersections	Stop Controlled Intersections		
А	Very low delay; most vehicles do not stop (Excellent)	less than 10.0	less than 10.0		
В	Higher delay; more vehicles stop (Very Good)	between 10.0 and 20.0	between 10.0 and 15.0		
С	Higher level of congestion; number of vehicles stopping is significant, although many still pass through intersection without stopping (Good)	between 20.0 and 35.0	between 15.0 and 25.0		
D	Congestion becomes noticeable; vehicles must sometimes wait through more than one red light; many vehicles stop (Satisfactory)	between 35.0 and 55.0	between 25.0 and 35.0		
Е	Vehicles must often wait through more than one red light; considered by many agencies to be the limit of acceptable delay	between 55.0 and 80.0	between 35.0 and 50.0		
F	This level is considered to be unacceptable to most drivers; occurs when arrival flow rates exceed the capacity of the intersection (Unacceptable)	greater than 80.0	greater than 50.0		

Table 4 – Level of Service Criteria for Intersections

3.2 Existing (2021) Intersection Operation

The results of the LOS analysis under existing (2021) traffic volumes during the AM and PM peak hours can be found below in **Table 5**. The existing intersection geometry and traffic control has been utilized in this scenario. Detailed output of the Synchro analysis can be found in **Appendix D**.

Location		Weekday	/ AM Peal	k Hour		ſ	Weekda	y PM P	eak Hour	
(N-S Street /	Delay		1.00	05% Ouque (m)		NIC	Delay	1.00	95% Q	ueue (m)
E-W Street)	V/C	(s)	LOS	Model	Storage	V/C	(s)	LOS	Model	Storage
Levesque Street / Kingsway (signalized)	0.48	17.0	В	-	-	0.41	10.7	В	-	-
EBL	0.00	0.0	А	0	59	0.00	6.2	Α	1	59
EBT	0.20	11.6	В	34	-	0.40	8.8	Α	69	-
EBR	0.06	10.5	В	8	94	0.14	7.0	Α	10	94
WBL	0.18	6.2	Α	16	30	0.20	4.2	Α	9	30
WBT	0.36	7.9	Α	56	-	0.27	4.4	Α	34	-
WBR	0.00	0.0	Α	0	-	0.00	3.3	Α	0	-
NBL	0.81	60.1	E	77	13	0.54	48.1	D	33	13
NBTR	0.08	37.7	D	0	-	0.08	42.6	D	0	-
SB	0.00	0.0	А	0	-	0.00	42.0	D	0	-
Moonlight Avenue / Kingsway (signalized)	0.46	9.3	A	-	-	0.42	8.8	А	-	-
EBL	0.13	4.0	Α	4	40	0.04	4.1	Α	2	40
EBT	0.24	5.3	Α	33	-	0.44	7.3	Α	71	-
EBR	0.03	4.4	Α	1	22	0.05	4.9	Α	5	22
WBL	0.01	4.7	Α	1	42	0.08	3.7	Α	3	42
WBT	0.46	8.1	А	77	-	0.35	6.1	Α	54	-
WBR	0.01	5.1	А	0	51	0.01	4.3	Α	0	51
NBL	0.55	49.9	D	25	20	0.38	45.7	D	18	20
NBTR	0.05	42.6	D	9	-	0.08	42.6	D	12	-
SBL	0.04	42.7	D	4	14	0.14	43.3	D	8	14
SBTR	0.02	42.4	D	6	-	0.06	42.5	D	10	-
Levesque Street / Bancroft Drive (unsignalized)	-	5.6	A	-	-	-	5.0	А	-	-
SB	0.16	9.9	А	5	-	0.17	10.1	В	5	-
Moonlight Avenue & Moonlight Beach Road / Bancroft Drive (unsignalized)	-	7.4	A	-	-	-	7.8	A	-	-
EB	0.06	7.5	Α	0	-	0.16	8.1	Α	1	-
WB	0.10	7.4	Α	2	-	0.07	7.5	Α	4	-
NB	0.01	7.5	Α	2	-	0.02	7.5	Α	2	-
SB	0.05	7.4	А	2	-	0.09	7.7	Α	2	-
Estelle Street / Bancroft Drive (unsignalized)	-	0.4	A	-	-	-	0.3	А	-	-
SB	0.01	9.0	Α	1	-	0.00	9.7	Α	0	-

Table 5 – Existing (2021) LOS

The results of the LOS analysis indicate that all intersections are operating within the typical design limits noted in Section 3.1.

The anticipated queue for the northbound left turn movements at the Street 'C' & Levesque Street / Kingsway intersection extend past the existing storage length; furthermore, the northbound queue will extend past existing commercial driveways along Levesque Street. Based on our review of the SimTraffic model, this queue is experienced for a short period of time and will clear the end of each respective phase and not impact queuing for the adjacent lanes.

The anticipated queue for the eastbound through and westbound through movements extend past the storage and taper length for the auxiliary lanes at the Street 'C' & Levesque Street / Kingsway and Moonlight Avenue / Kingsway intersections; however, the queue will not extend past major intersections and based on our review of the SimTraffic model, these queues are experienced for a short period of time and will clear the end of each intersections eastbound and westbound through phase.

The anticipated queue for the northbound left turn at the Moonlight Avenue / Kingsway intersection will extend past the existing storage length; however, the queuing does not extend beyond the existing left turn taper and no operational issues are anticipated.

There are no other issues regarding the anticipated queuing for all other movements at the study area intersections.

An analysis was completed for left turn movements at the unsignalized intersections in the study area, based on the criteria outlined in Appendix 9A of the Ontario Ministry of Transportation Design Supplement for TAC Geometric Design Guide for Canadian Roads (dated June 2017) [MTO DS]. Based on the above noted criteria a left-turn lane is not warranted at the unsignalized intersections in the study area (results are provided in **Appendix G**).

A review of the need for additional auxiliary right turn lanes was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all right turn movements; consequently, additional right turn lane improvements are not recommended.

Based on the Ontario Traffic Manual Book 12 *Signal Justification*, traffic signals are not warranted at the unsignalized intersections in the study area (results are provided in **Appendix H**).

No improvements are recommended for the existing (2021) scenario.

3.3 Background (2024) Intersection Operation

The results of the LOS analysis under background (2024) traffic volumes during the AM and PM peak hours can be found below in **Table 6**.

As noted in Section 2.2, the KED TIS recommended the following at the Street 'C' & Levesque Street / Kingsway intersection prior to build-out the KED and future business park development:

- Street 'C' be constructed with a left, through and right turn lane configuration; and
- The southbound left turn is constructed with a 75 metre storage length.

We have assumed these improvements will be complete for the purpose of our analysis. A 55 metre taper length has been assumed for the southbound left turn lane. Existing traffic control has been utilized for this scenario. Detailed output of the Synchro analysis can be found in **Appendix E**.

Table 6 – Back	around	(2024)	LOS
	gioana	_~,	

Location	Weekday AM Peak Hour						Weekda	W PM P	eak Hour	
(N-S Street /					Delay			05% Oucus (m)		
E-W Street)	V/C	(s)	LOS	Model	Storage	V/C	(s)	LOS	Model	Storage
Street 'C' & Levesque Street / Kingsway (signalized)	0.95	36.1	D	-	-	0.63	19.6	В	-	-
EBL	0.90	60.4	E	96	59	0.25	11.5	В	23	59
EBT	0.27	14.1	В	43	-	0.60	14.5	В	135	-
EBR	0.08	12.4	В	9	94	0.18	9.9	Α	13	94
WBL	0.21	7.6	Α	17	30	0.34	8.8	Α	12	30
WBT	0.54	11.5	В	91	-	0.37	7.1	Α	59	-
WBR	0.16	7.9	Α	21	-	0.03	5.1	Α	5	-
NBL	1.20	162.3	F	163	13	0.53	44.3	D	43	13
NBTR	0.59	43.1	D	75	-	0.19	39.8	D	24	-
SBL	0.39	40.3	D	29	75	0.80	66.6	Е	55	75
SBT	0.08	36.3	D	16	-	0.32	41.0	D	37	-
SBR	0.03	35.8	D	4	-	0.55	44.6	D	56	-
Moonlight Avenue / Kingsway (signalized)	0.67	11.5	В	-	-	0.62	10.2	В	-	-
EBL	0.24	8.1	Α	4	40	0.05	4.2	Α	2	40
EBT	0.31	5.8	Α	46	-	0.66	10.2	В	136	-
EBR	0.03	4.4	Α	1	22	0.05	5.0	А	6	22
WBL	0.01	4.8	Α	1	42	0.15	5.9	Α	4	42
WBT	0.71	11.8	В	152	-	0.46	7.0	Α	76	-
WBR	0.01	5.2	Α	0	51	0.01	4.3	Α	0	51
NBL	0.57	51.0	D	25	20	0.41	45.9	D	19	20
NBTR	0.06	42.6	D	9	-	0.08	42.5	D	12	-
SBL	0.04	42.6	D	4	14	0.14	43.2	D	8	14
SBTR	0.02	42.4	D	6	-	0.06	42.4	D	10	-
Levesque Street / Bancroft Drive (unsignalized)	-	7.3	А	-	-	-	8.1	A	-	-
SB	0.31	12.7	В	11	-	0.46	13.8	В	20	-
Moonlight Avenue & Moonlight Beach Road / Bancroft Drive (unsignalized)	-	7.8	A	-	-	-	8.2	A	-	-
EB	0.08	7.7	А	0	-	0.23	8.5	А	1	-
WB	0.17	7.9	А	2	-	0.09	7.7	А	5	-
NB	0.01	7.7	А	4	-	0.02	7.7	Α	2	-
SB	0.06	7.6	А	2	-	0.10	7.9	А	3	-
Estelle Street / Bancroft Drive (unsignalized)	-	0.3	А	-	-	-	0.2	А	-	-
SB	0.01	9.3	Α	1	-	0.00	10.1	В	0	-

The results of the LOS analysis indicates that the Street 'C' & Levesque Street / Kingsway intersection is operating outside the typical design limits as noted in Section 3.1 in the AM peak hour. The following

improvements are recommended at the intersection (prior to build-out the KED and future business park development):

- Adjust eastbound and northbound signal heads to accommodate a protected and permissive left turn signal phase; and
- Adjust and repaint northbound lane pavement markings to provide 100 metre parallel length and 30 metre taper length for the northbound left turn lane.

A summary of the results of the Synchro analysis with the above-noted improvements, during the AM peak hour, can be found below in **Table 7**; no adjustments were made to the signal timing and phasing in the PM peak hour as the intersection operates within typical design limits during this period. It is noted the above noted improvements are linked to the build-out of the KED and future business park development; the timing for the construction of these improvements should be reviewed along with the schedule for the KED and future business park. Detailed output of the Synchro analysis can be found in **Appendix E**.

Location		Weekday	/ AM Peal	k Hour		Weekday PM Peak Hour				
(N-S Street /	V/C	Delay LOS		95% Queue (m)		V/C	Delay	LOS	95% Queue (m)	
E-W Street)	1,0	(s)	200	Model	Storage	•/0	(s)	200	Model	Storage
Street 'C' & Levesque Street / Kingsway (signalized)	0.87	31.8	D	-	-	-	-	-	-	-
EBL	0.82	43.6	D	74	59	-	-	-	-	59
EBT	0.31	18.2	В	54	-	-	-	-	-	-
EBR	0.08	15.8	В	11	94	-	-	-	-	94
WBL	0.29	17.2	В	26	30	-	-	-	-	30
WBT	0.83	34.4	С	189	-	-	-	-	-	-
WBR	0.15	20.1	С	22	-	-	-	-	-	-
NBL	0.80	43.2	D	98	100	-	-	-	-	13
NBTR	0.41	31.2	С	60	-	-	-	-	-	-
SBL	0.63	60.9	E	30	75	-	-	-	-	75
SBT	0.20	47.5	D	18	-	-	-	-	-	-
SBR	0.03	46.3	D	4	-	-	-	-	-	-

Table 7 – Background (2024) LOS with Improvements

The results of the LOS analysis indicate that the Street 'C' & Levesque Street / Kingsway intersection operates marginally outside the typical design limits noted in Section 3.1 in the AM peak hour; however, no improvements are recommended as the V/C ratio is only marginally outside design limits. Furthermore, as noted below, there are no operational issues with the anticipated queuing for any of the movements. Consequently, no further improvements are recommended at this intersection.

The results of the LOS analysis indicate that all other intersections are operating within the typical design limits noted in Section 3.1.

The anticipated northbound queue will extend past existing commercial driveways along Levesque Street. Based on our review of the SimTraffic model, this queue is experienced for a short period of time and will clear the end of each respective phase and not impact queuing for the adjacent lanes.

The anticipated queue for the eastbound through and westbound through movements extend past the storage and taper length for the auxiliary lanes at the Street 'C' & Levesque Street / Kingsway and Moonlight Avenue / Kingsway intersections; however, the queue will not extend past major intersections

and based on our review of the SimTraffic model, these queues are experienced for a short period of time and will clear the end of each intersections eastbound and westbound through phase.

The anticipated queue for the eastbound left turn movements at the Street 'C' & Levesque Street / Kingsway intersection and northbound left turn at the Moonlight Avenue / Kingsway intersection will extend past the existing storage length; however, the queuing does not extend beyond the existing left turn taper and no operational issues are anticipated.

There are no other issues regarding the anticipated queuing for all other movements at the study area intersections.

An analysis was completed for left turn movements at the unsignalized intersections in the study area, based on the criteria outlined in Appendix 9A of the MTO DS. A left-turn lane is warranted in the eastbound direction at the Levesque Street / Bancroft Drive intersection (results are provided in **Appendix G**); however, based on the low eastbound through volumes at the intersection, it is anticipated there will be no issues regarding delay and queuing for eastbound movements.

Based on the above noted criteria, a left-turn lane is not warranted for all other movements at unsignalized intersections in the study area (results are provided in **Appendix G**).

A review of the need for additional auxiliary right turn lanes was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all right turn movements; consequently, additional right turn lane improvements are not recommended.

Based on the Ontario Traffic Manual Book 12 *Signal Justification*, traffic signals are not warranted at the unsignalized intersections in the study area (results are provided in **Appendix H**).

No further improvements are recommended for the background (2024) scenario.

3.4 Background (2029) Intersection Operation

The results of the LOS analysis under background (2029) traffic volumes during the AM and PM peak hours can be found below in **Table 8**. The infrastructure improvements and signal timing improvements noted in Section 3.3 have been utilized in this scenario. Detailed output of the Synchro analysis can be found in **Appendix E**.

Table 8 –	Background	(2029)	LOS
	- aongroana	(,

Location		Weekday AM Peak Hour					Weekda	V PM P	eak Hour	
(N-S Street /		Delay			ueue (m)		Delav	0.5%		ueue (m)
E-W Street)	V/C	(s)	LOS	Model	Storage	V/C	(s)	LOS	Model	Storage
Levesque Street / Kingsway (signalized)	0.91	34.4	С	-	-	0.67	20.5	С	-	-
EBL	0.88	58.3	E	82	59	0.27	12.9	В	24	59
EBT	0.33	18.6	В	58	-	0.65	16.6	В	148	-
EBR	0.08	16.0	В	12	94	0.19	10.8	В	13	94
WBL	0.32	17.5	В	28	30	0.38	10.5	В	13	30
WBT	0.88	37.9	D	208	-	0.40	7.6	Α	64	-
WBR	0.15	20.2	С	22	-	0.03	5.3	Α	5	-
NBL	0.83	45.7	D	103	100	0.54	44.0	D	45	100
NBTR	0.42	31.3	С	62	-	0.19	39.2	D	25	-
SBL	0.63	61.0	E	30	75	0.81	67.8	E	59	75
SBT	0.20	47.5	D	18		0.31	40.3	D	37	-
SBR	0.03	46.3	D	0	-	0.60	45.7	D	62	-
Moonlight Avenue / Kingsway (signalized)	0.71	12.3	В	-	-	0.65	10.8	В	-	-
EBL	0.27	9.7	А	4	40	0.05	4.4	А	2	40
EBT	0.33	6.0	Α	50	-	0.70	11.0	В	152	-
EBR	0.03	4.5	Α	1	22	0.06	5.0	Α	7	22
WBL	0.01	4.9	Α	1	42	0.18	6.9	Α	4	42
WBT	0.75	12.9	В	170	-	0.49	7.3	Α	83	-
WBR	0.01	5.2	Α	0	51	0.01	4.4	Α	0	51
NBL	0.60	52.1	D	27	20	0.41	45.9	D	19	20
NBTR	0.05	42.5	D	9	-	0.08	42.4	D	12	-
SBL	0.04	42.5	D	4	14	0.14	43.0	D	8	14
SBTR	0.02	42.3	D	6	-	0.06	42.3	D	10	-
Levesque Street / Bancroft Drive (unsignalized)	-	7.4	А	-	-	-	8.3	А	-	-
SB	0.33	13.1	В	12	-	0.48	14.4	В	22	-
Moonlight Avenue & Moonlight Beach Road / Bancroft Drive (unsignalized)	-	7.8	A	-	-	-	8.3	А	-	-
EB	0.08	7.7	А	0	-	0.24	8.7	Α	1	-
WB	0.18	8.0	А	2	-	0.09	7.7	Α	5	-
NB	0.01	7.7	A	4	-	0.02	7.8	Α	2	-
SB	0.06	7.7	А	2	-	0.11	8.0	Α	3	-
Estelle Street / Bancroft Drive (unsignalized)	-	0.3	А	-	-	-	0.2	А	-	-
SB	0.01	9.4	А	1	-	0.00	10.2	В	0	-

The results of the LOS analysis indicate that the Street 'C' & Levesque Street / Kingsway intersection operates outside the typical design limits noted in Section 3.1 in the AM peak hour; however, no improvements are recommended as the intersection is still operating within the ultimate capacity and

there are no operational issues with the anticipated queuing for any of the movements. Consequently, no further improvements are recommended at this intersection.

The results of the LOS analysis indicate that all other intersections are operating within the typical design limits noted in Section 3.1.

The anticipated queue for the northbound left turn movements at the Street 'C' & Levesque Street / Kingsway intersection marginally extend past the proposed storage length; furthermore, the northbound queue will extend past existing commercial driveways along Levesque Street. Based on our review of the SimTraffic model, this queue is experienced for a short period of time and will clear the end of each respective phase and not impact queuing for the adjacent lanes.

The anticipated queue for the eastbound through and westbound through movements extend past the storage and taper length for the auxiliary lanes at the Street 'C' & Levesque Street / Kingsway and Moonlight Avenue / Kingsway intersections; however, the queue will not extend past major intersections and based on our review of the SimTraffic model, these queues are experienced for a short period of time and will clear the end of each intersections eastbound and westbound through phase.

The anticipated queue for the eastbound left turn movements at the Street 'C' & Levesque Street / Kingsway intersection and northbound left turn at the Moonlight Avenue / Kingsway intersection will extend past the existing storage length; however, the queuing does not extend beyond the existing left turn taper and no operational issues are anticipated.

There are no issues regarding the anticipated queuing for all other movements at the study area intersections.

An analysis was completed for left turn movements at the unsignalized intersections in the study area, based on the criteria outlined in Appendix 9A of the MTO DS. A left-turn lane is warranted in the eastbound direction at the Levesque Street / Bancroft Drive intersection (results are provided in **Appendix G**); however, based on the low eastbound through volumes at the intersection, it is anticipated there will be no issues regarding delay and queuing for eastbound movements.

Based on the above noted criteria, a left-turn lane is not warranted for all other movements at unsignalized intersections in the study area (results are provided in **Appendix G**).

A review of the need for additional auxiliary right turn lanes was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all right turn movements; consequently, additional right turn lane improvements are not recommended.

Based on the Ontario Traffic Manual Book 12 *Signal Justification*, traffic signals are not warranted at the unsignalized intersections in the study area (results are provided in **Appendix H**).

No further improvements are recommended for the background (2029) scenario.

4 **Proposed Development Traffic Generation and** Assignment

4.1 **Traffic Generation**

The traffic generation for the proposed development has been based on the ITE Trip Generation Manual. The following ITE land uses have been applied to estimate the traffic from the proposed development:

- ITE land use 220 (Multi-Family Housing (Low-Rise)) General Urban / Suburban Setting
- ITE land use 221 (Multi-Family Housing (Mid-Rise)) General Urban / Suburban Setting

The estimated trip generation of the proposed development is illustrated below in **Table 9**. The AM and PM peak hour traffic generation for the proposed development is not expected to exactly align with the AM and PM peak hour in the traffic counts; consequently, we have applied the peak hour of adjacent street traffic values provided in the ITE Trip Generation Manual.

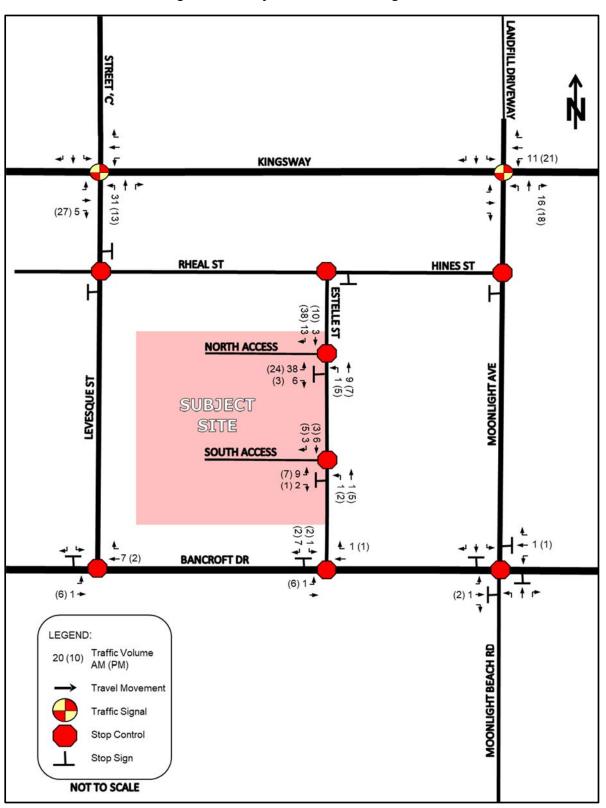
Land Use	Size	A	M Peak H	our	PM Peak Hour			
		IN	OUT	TOTAL	IN	OUT	TOTAL	
Multi-Family Housing Low-Rise ITE Land Use: 220	59 units	7	22	29	23	14	37	
Multi-Family Housing Mid-Rise ITE Land Use: 221	120 units	11	33	44	32	21	53	
TOTAL TRAFFIC GENERA	18	55	73	55	35	90		

Table 9 – Estimated Traffic Generation of Proposed Development

In order to be conservative, no transportation modal split reduction has been applied to the abovenoted traffic generation calculation.

4.2 **Traffic Assignment**

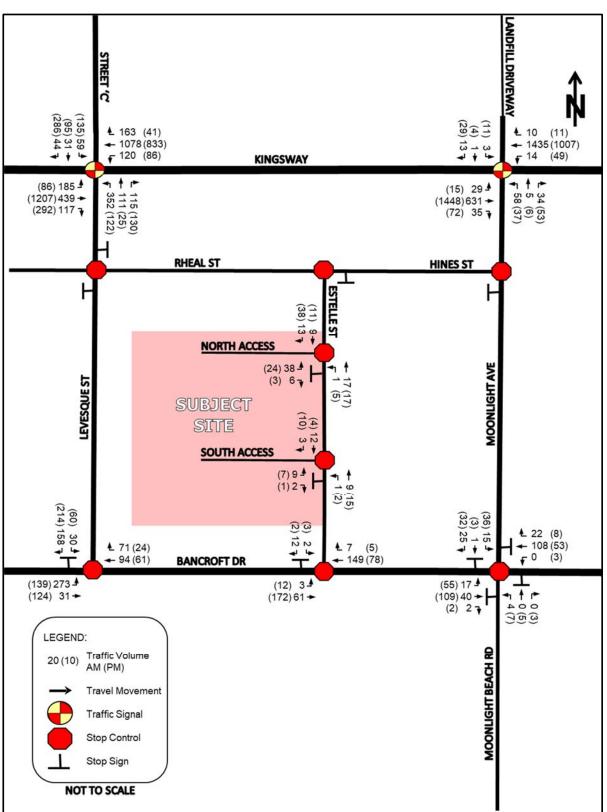
For the purposes of this study, it has been assumed that all traffic generated by the proposed development will be new traffic and would not be in the study area if the development was not constructed.


The distribution of traffic for the proposed development is assumed to follow the existing trip distribution of the traffic counts in Section 2.6. The distribution of trips is illustrated in **Table 10** using the methodology outlined above.

Scenario	Direction	West via Kingsway	East via Kingsway	West via Bancroft Drive	East via Bancroft Drive
0.54	In	27%	60%	7%	5%
AM	Out	56%	30%	11%	2%
	In	50%	38%	9%	2%
PM	Out	37%	51%	8%	5%

Table 10 – Proposed Development Traffic Distribution Summary

Using the traffic distributions pattern noted above, the traffic assignment for the proposed development was calculated for the AM and PM peak hour and is illustrated in **Figure 11**.



4.3 **Total Horizon Year Traffic Volumes with the Proposed Development**

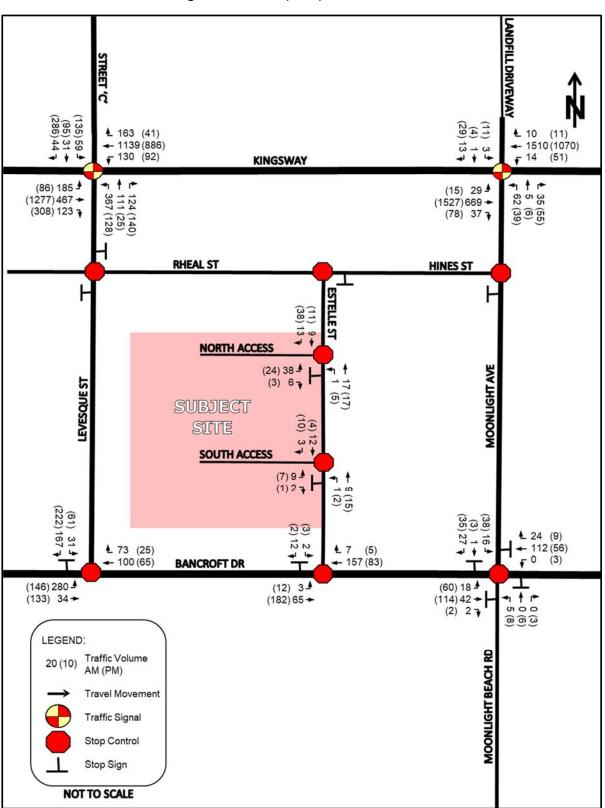

For the total (2024 & 2029) horizon year traffic volumes, the proposed development traffic was added to the background (2024 & 2029) traffic volumes. The resulting total (2024 & 2029) horizon year traffic volume for the AM and PM peak hour are illustrated in **Figure 12** and **13**, respectively.

Figure 13 – Total (2029) Traffic Volumes

5 Intersection Operation with Proposed Development

5.1 Total (2024) Intersection Operation

The results of the LOS analysis under total (2024) traffic volumes during the AM and PM peak hours can be found below in **Table 11**. The infrastructure improvements and signal timing improvements noted in Section 3.3 have been utilized in this scenario. Detailed output of the Synchro analysis can be found in **Appendix F**.

Location		Weekday	y AM Peal	< Hour			Weekda	y PM P	eak Hour	
(N-S Street /		Delay			ueue (m)		Delay	ŕ		ueue (m)
E-W Street)	V/C	(s)	LOS	Model	Storage	V/C	(s)	LOS	Model	Storage
Street 'C' & Levesque Street / Kingsway (signalized)	0.90	33.1	С	-	-	0.63	19.7	В	-	-
EBL	0.83	45.2	D	75	59	0.25	11.5	В	23	59
EBT	0.31	18.4	В	54	-	0.60	14.5	В	135	-
EBR	0.08	16.0	В	12	94	0.20	10.0	В	13	94
WBL	0.29	17.4	В	26	30	0.34	8.8	Α	12	30
WBT	0.84	34.8	С	189	-	0.37	7.1	Α	59	-
WBR	0.15	20.3	С	22	-	0.03	5.1	Α	5	-
NBL	0.87	50.2	D	109	100	0.59	46.7	D	48	100
NBTR	0.41	31.1	С	60	-	0.19	39.8	D	24	-
SBL	0.63	61.1	Е	30	75	0.80	66.6	Е	55	75
SBT	0.20	47.7	D	18	-	0.32	41.0	D	37	-
SBR	0.03	46.5	D	0	-	0.55	44.6	D	56	-
Moonlight Avenue / Kingsway (signalized)	0.68	11.8	В	-	-	0.63	11.0	В	-	-
EBL	0.24	8.1	Α	4	40	0.05	4.6	Α	2	40
EBT	0.32	6.3	Α	47	-	0.68	11.2	В	138	-
EBR	0.03	4.8	Α	1	22	0.05	5.4	Α	6	22
WBL	0.03	4.5	Α	3	42	0.24	6.8	Α	5	42
WBT	0.72	11.9	В	152	-	0.46	7.1	А	76	-
WBR	0.01	5.2	А	0	51	0.01	4.4	А	0	51
NBL	0.56	49.6	D	25	20	0.40	45.5	D	19	20
NBTR	0.07	42.0	D	11	-	0.09	42.3	D	14	-
SBL	0.04	42.0	D	4	14	0.14	42.9	D	8	14
SBTR	0.02	41.7	D	6	-	0.06	42.1	D	10	-
Levesque Street / Bancroft Drive (unsignalized)	-	7.2	A	-	-	-	8.1	A	-	-
SB	0.31	12.8	В	11	-	0.46	13.9	В	20	-
Moonlight Avenue & Moonlight Beach Road / Bancroft Drive (unsignalized)	-	7.8	А	-	-	-	8.2	A	-	-
EB	0.08	7.7	A	0	-	0.23	8.5	Α	1	-
WB	0.17	7.9	А	2	-	0.09	7.7	Α	6	-
NB	0.01	7.7	А	4	-	0.02	7.7	Α	2	-
SB	0.06	7.6	А	2	-	0.10	7.9	Α	2	-
Estelle Street / Bancroft Drive (unsignalized)	-	0.7	А	-	-	-	0.5	А	-	-
SB	0.02	9.3	Α	1	-	0.01	9.6	Α	1	-
Estelle Street / North Access (unsignalized)	-	2.8	A	-	-	-	2.2	A	-	-
EB	0.01	8.6	Α	1	-	0.01	8.6	Α	1	-

Location		Weekday	AM Peal	k Hour		Weekday PM Peak Hour				
(N-S Street /	V/C	C Delay LOS 95% Queue (m)		V/C Delay		LOS	95% Queue (m)			
E-W Street)	V/C	(s)	L03	Model	Storage	VC	(s)	103	Model	Storage
Estelle Street / South Access (unsignalized)	-	4.7	А	-	-	-	2.8	A	-	-
EB	0.05	8.8	A	2	-	0.03	8.9	А	1	-

The results of the LOS analysis indicate that the Street 'C' & Levesque Street / Kingsway intersection operates marginally outside the typical design limits noted in Section 3.1 in the AM peak hour; however, no improvements are recommended as the V/C ratio is only marginally outside design limits. Furthermore, as noted below there are no operational issues with the anticipated queuing for any of the movements. Consequently, no further improvements are recommended at this intersection.

The results of the LOS analysis indicate that all other intersections are operating within the typical design limits noted in Section 3.1.

The anticipated queue for the northbound left turn movements at the Street 'C' & Levesque Street / Kingsway intersection extend past the proposed storage length; furthermore, the northbound queue will extend past existing commercial driveways along Levesque Street. Based on our review of the SimTraffic model, this queue is experienced for a short period of time and will clear the end of each respective phase and not impact queuing for the adjacent lanes.

The anticipated queue for the eastbound through and westbound through movements extend past the storage and taper length for the auxiliary lanes at the Street 'C' & Levesque Street / Kingsway and Moonlight Avenue / Kingsway intersections; however, the queue will not extend past major intersections and based on our review of the SimTraffic model, these queues are experienced for a short period of time and will clear the end of each intersections eastbound and westbound through phase.

The anticipated queue for the eastbound left turn movements at the Street 'C' & Levesque Street / Kingsway intersection and northbound left turn at the Moonlight Avenue / Kingsway intersection will extend past the existing storage length; however, the queuing does not extend beyond the existing left turn taper and no operational issues are anticipated.

There are no issues regarding the anticipated queuing for all other movements at the study area intersections.

An analysis was completed for left turn movements at the unsignalized intersections in the study area, based on the criteria outlined in Appendix 9A of the MTO DS. A left-turn lane is warranted in the eastbound direction at the Levesque Street / Bancroft Drive intersection (results are provided in **Appendix G**); however, based on the low eastbound through volumes at the intersection, it is anticipated there will be no issues regarding delay and queuing for eastbound movements.

Based on the above noted criteria, a left-turn lane is not warranted for all other movements at unsignalized intersections in the study area (results are provided in **Appendix G**).

A review of the need for additional auxiliary right turn lanes was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all right turn movements; consequently, additional right turn lane improvements are not recommended.

Based on the Ontario Traffic Manual Book 12 *Signal Justification*, traffic signals are not warranted at the unsignalized intersections in the study area (results are provided in **Appendix H**).

No further improvements are recommended for the total (2024) scenario.

5.2 Total (2029) Intersection Operation

The results of the LOS analysis under total (2029) traffic volumes during the AM and PM peak hours can be found below in **Table 12**. The infrastructure improvements and signal timing improvements noted in Section 3.3 have been utilized in this scenario. Detailed output of the Synchro analysis can be found in **Appendix F**.

Location		Weekday	/ AM Peal	(Hour			Weekda	y PM P	eak Hour	
(N-S Street /	V/C	Delay	LOS	95% Q	ueue (m)	V/C	Delay	LOS	95% Q	ueue (m)
E-W Street)	V/C	(s)	L03	Model	Storage	v/C	(s)	103	Model	Storage
Street 'C' & Levesque Street / Kingsway (signalized)	0.94	35.9	D	-	-	0.67	20.6	с	-	-
EBL	0.88	59.5	E	82	59	0.27	12.9	В	24	59
EBT	0.33	18.8	В	58	-	0.65	16.6	В	148	-
EBR	0.08	16.2	В	12	94	0.21	11.0	В	14	94
WBL	0.32	17.7	В	28	30	0.38	10.5	В	13	30
WBT	0.89	38.4	D	208	-	0.40	7.6	А	64	-
WBR	0.15	20.4	С	22	-	0.03	5.3	Α	5	-
NBL	0.89	54.5	D	119	100	0.60	46.4	D	50	100
NBTR	0.42	31.2	С	62	-	0.19	39.2	D	25	-
SBL	0.63	61.2	Е	30	75	0.81	67.8	Е	59	75
SBT	0.20	47.7	D	18	-	0.31	40.3	D	37	-
SBR	0.03	46.5	D	0	-	0.60	45.7	D	62	-
Moonlight Avenue / Kingsway (signalized)	0.71	12.7	В	-	-	0.66	11.5	В	-	-
EBL	0.27	9.7	А	4	40	0.05	4.7	Α	2	40
EBT	0.34	6.6	А	51	-	0.72	12.0	В	154	-
EBR	0.03	4.9	А	1	22	0.06	5.5	Α	7	22
WBL	0.03	4.6	А	3	42	0.28	8.1	Α	5	42
WBT	0.76	13.1	В	170	-	0.49	7.4	Α	83	-
WBR	0.01	5.3	А	0	51	0.01	4.4	Α	0	51
NBL	0.59	50.5	D	27	20	0.41	45.7	D	19	20
NBTR	0.07	41.7	D	11	-	0.09	42.3	D	14	-
SBL	0.04	41.7	D	4	14	0.14	42.9	D	8	14
SBTR	0.02	41.5	D	6	-	0.06	42.1	D	10	-
Levesque Street / Bancroft Drive (unsignalized)	-	7.4	A	-	-	-	8.3	A	-	-
SB	0.33	13.2	В	12	-	0.49	14.6	В	22	-
Moonlight Avenue & Moonlight Beach Road / Bancroft Drive (unsignalized)	_	7.9	A	-	-	-	8.3	А	-	-
EB	0.09	7.7	А	0	-	0.24	8.7	Α	1	-
WB	0.18	8.0	А	2	-	0.09	7.7	Α	6	-
NB	0.01	7.7	А	4	-	0.02	7.8	Α	2	-
SB	0.06	7.7	А	2	-	0.11	8.0	Α	3	-

Table 12 – Total (2029) LOS

Location		Weekday AM Peak Hour					Weekday PM Peak Hour				
(N-S Street /	V/C	Delay	LOS	95% Queue (m)		V/C	Delay	LOS	95% Queue (m)		
E-W Street)		(s)	LOO	Model	Storage	0,0	(s)	LOO	Model	Storage	
Estelle Street / Bancroft Drive (unsignalized)	-	0.6	А	-	-	-	0.5	А	-	-	
SB	0.02	9.4	А	1	-	0.01	9.7	А	1	-	
Estelle Street / North Access (unsignalized)	-	2.8	A	-	-	-	2.2	А	-	-	
EB	0.01	8.6	А	1	-	0.01	8.6	А	1	-	
Estelle Street / South Access (unsignalized)	-	4.7	A	-	-	-	2.8	А	-	-	
EB	0.05	8.8	А	2	-	0.03	8.9	Α	1	-	

The results of the LOS analysis indicate that the Street 'C' & Levesque Street / Kingsway intersection operates outside the typical design limits noted in Section 3.1 in the AM peak hour; however, no improvements are recommended as the intersection is still operating within the ultimate capacity and there are no operational issues with the anticipated queuing for any of the movements. Consequently, no further improvements are recommended at this intersection.

The results of the LOS analysis indicate that all other intersections are operating within the typical design limits noted in Section 3.1.

The anticipated queue for the northbound left turn movements at the Street 'C' & Levesque Street / Kingsway intersection extend past the proposed storage length; furthermore, the northbound queue will extend past existing commercial driveways along Levesque Street. Based on our review of the SimTraffic model, this queue is experienced for a short period of time and will clear the end of each respective phase and not impact queuing for the adjacent lanes.

The anticipated queue for the eastbound through and westbound through movements extend past the storage and taper length for the auxiliary lanes at the Street 'C' & Levesque Street / Kingsway and Moonlight Avenue / Kingsway intersections; however, the queue will not extend past major intersections and based on our review of the SimTraffic model, these queues are experienced for a short period of time and will clear the end of each intersections eastbound and westbound through phase.

The anticipated queue for the eastbound left turn movements at the Street 'C' & Levesque Street / Kingsway intersection and northbound left turn at the Moonlight Avenue / Kingsway intersection will extend past the existing storage length; however, the queuing does not extend beyond the existing left turn taper and no operational issues are anticipated.

There are no issues regarding the anticipated queuing for all other movements at the study area intersections.

An analysis was completed for left turn movements at the unsignalized intersections in the study area, based on the criteria outlined in Appendix 9A of the MTO DS. A left-turn lane is warranted in the eastbound direction at the Levesque Street / Bancroft Drive intersection (results are provided in **Appendix G**); however, based on the low eastbound through volumes at the intersection, it is anticipated there will be no issues regarding delay and queuing for eastbound movements.

Based on the above noted criteria, a left-turn lane is not warranted for all other movements at unsignalized intersections in the study area (results are provided in **Appendix G**).

A review of the need for additional auxiliary right turn lanes was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all right turn movements; consequently, additional right turn lane improvements are not recommended.

Based on the Ontario Traffic Manual Book 12 *Signal Justification*, traffic signals are not warranted at the unsignalized intersections in the study area (results are provided in **Appendix H**).

No further improvements are recommended for the total (2029) scenario.

5.3 Supplementary Analysis - Street 'C' & Levesque Street / Kingsway Eastbound Double Left Turn Lanes

As noted in Section 2.2, the KED TIS recommended Kingsway be widened to accommodate eastbound double left turn lanes at the Street 'C' & Levesque Street / Kingsway intersection based on traffic volumes observed in the peak hours of analysis in the report (excerpts provided in **Appendix B**). The KED TIS analyzed three main peak periods at this intersection, the PM and Friday Pre / Post Game peak hours. The recommendation for the eastbound double left turn lanes at the Street 'C' & Levesque Street / Kingsway intersection was based on the traffic analysis completed in the Friday Pre / Post Game peak hours; consequently, we have included a supplementary analysis to assess the intersection with these recommendations for the critical total (2029) scenario in the AM and PM peak hours.

The existing storage and taper length were maintained in the recommendation for the eastbound double left turn lanes at the Street 'C' & Levesque Street / Kingsway intersection. With the construction of the eastbound double left turn lanes, protected eastbound left turn phasing is recommended.

The results of the LOS analysis under total (2029) traffic volumes at the Street 'C' & Levesque Street / Kingsway intersection during the AM and PM peak hours can be found below in **Table 13**. Detailed output of the Synchro analysis can be found in **Appendix F**.

Location		Weekday	/ AM Peal	k Hour		Weekday PM Peak Hour				
(N-S Street /	V/C	Delay	LOS	95% Q	ueue (m)	V/C	Delay	LOS	95% Q	ueue (m)
E-W Street)	0/0	(s)	200	Model	Storage	V/C	(s)	200	Model	Storage
Street 'C' & Levesque Street / Kingsway (signalized)	0.88	34.8	С	-	-	0.67	22.8	С	-	-
EBL	0.77	64.6	Е	49	59	0.73	72.2	Е	22	59
EBT	0.33	19.5	В	60	-	0.65	16.6	В	148	-
EBR	0.08	16.8	В	12	94	0.21	11.0	В	14	94
WBL	0.31	17.2	В	29	30	0.38	10.5	В	13	30
WBT	0.86	36.1	D	207	-	0.44	11.5	В	82	-
WBR	0.18	20.3	С	29	-	0.03	8.0	А	2	-
NBL	0.86	49.0	D	114	100	0.60	46.4	D	50	100
NBTR	0.41	30.8	С	62	-	0.19	39.1	D	25	-
SBL	0.64	62.8	Е	31	75	0.81	67.6	Е	59	75
SBT	0.20	48.5	D	18	-	0.31	40.2	D	37	-
SBR	0.03	47.3	D	0	-	0.51	42.5	D	53	-

Table 13 – Total (2029) LOS (Eastbound Double Left Turn Lanes)

Based on our comparison of the traffic analysis for the total (2029) with and without the eastbound double left turn lanes at the Street 'C' & Levesque Street / Kingsway intersection in Tables 12 and 13, this improvement will marginally improve the overall traffic operations at the intersection during the AM

and PM peak hours of operation and will improve the capacity and queuing length for the eastbound left turn movement. Consequently, there are no issues with the recommendation for the eastbound double left turn lanes at the Street 'C' & Levesque Street / Kingsway intersection; however, it is noted that the impact of the improvement is relatively minor.

5.4 Sight Distance Review

A review of the available sight distance for the proposed North Access and South Access was completed as part of this analysis.

The sight distance north (145 metres) and south (140 metres) of the North Access exceed the minimum stopping sight distance requirements as identified in the Transportation Association of Canada Design Guide for Canadian Roads (2017) [TAC Guidelines] for a design speed of 60 km/h (85 metres).

The sight distance north (135 metres) and south (100 metres) of the South Access exceed the minimum stopping sight distance requirements as identified in the TAC Guidelines for a design speed of 60 km/h (85 metres).

The sight distance available at the proposed North Access and South Access are acceptable for the intended use.

5.5 Site Access

The North Access and South Access will operate efficiently as full-movement access driveways, with one-way stop control for eastbound movements. A single ingress and egress lane will provide the necessary capacity to service the proposed development.

The proposed spacing between North Access and Rheal Street and South Access and Bancroft Drive (measured corner of driveway to corner of roadway – 148 metres and 148 metres respectively) is greater than the minimum intersection spacing along a local road as per the TAC Guidelines – Section 9.4.2.3 (60 metres between intersections).

The proposed spacing between the North Access and South Access (measured edge of driveway to edge of roadway – 99 metres) is greater than the minimum intersection spacing along a local road as per the TAC Guidelines – Section 9.4.2.3 (60 metres between intersections).

6 Parking Review

6.1 Municipal By-law Requirement Parking

The Town's Zoning By-law 2010–100Z [Zoning By-law] provides parking requirements for a variety of building types and land uses. According to the description provided in the Zoning By-law, the proposed development includes 143 apartment units and 36 townhouse units. **Table 14** illustrates the parking requirement for the proposed development, according to the Zoning By-law.

Unit Type	Section	Parking Standard	Proposed Units	Required Parking
Residential Dwelling, Multiple	5.5.1	1.5 sp./unit	143	215 spaces
Residential Dwelling, Townhouse	5.5.1	1 sp./unit	36	36 spaces
	TOTAL	REQUIRED PARKING SPACES		251 spaces
Accessible Parking	5.2.3.5	2 sp. plus 1 space for each additional 50 sp. greater than 100 sp.	-	6 spaces
Bicycle Parking	5.8	0.5 sp./unit	179	90 spaces

Table 14 – Zoning By-law Requirement Parking Calculation

6.2 **Proxy Parking Counts**

In order to estimate the residential visitor parking demand for the apartment units within the proposed development, a proxy parking survey was commissioned by JD Engineering. The site was reviewed by City staff and confirmed to be a suitable proxy site. The surrounding transportation conditions at the proxy parking sites are consistent with the surrounding transportation conditions at the proposed development. The selected proxy survey location is as follows:

1) 568 Greenbriar Drive [Greenbriar Apartments]

The proxy surveys at Greenbrier Apartments were completed at the following times:

- 1) Friday November 20th, 2020 from 17:00 to 21:00; and
- 2) Saturday November 21st, 2020 from 11:00 to 21:00.

The proxy parking counts were completed at 30 minute intervals during the above-noted periods.

On-street parking is permitted on Greenbriar Drive and Highgate Road. On-street parking is prohibited from December 1st to March 31st between 00:00 and 07:00.

 Table 15 summarizes the building and parking statistics at the proxy sites.

Proxy Site	Number of	Total Visitor	Total Resident	Total
	Units	Parking Supply	Parking Supply	Parking Supply
Greenbriar Apartments	122	30	160	190

6.3 **Residential Visitor Parking**

6.3.1 Residential Visitor Proxy Survey Data

 Table 16 summarizes the residential visitor parking survey data for the proxy site. Detailed results are provided in Appendix I.

			Visitor	Parking	
Proxy Site	Number of Units	Peak Period	Supply (spaces)	Demand (spaces)	Demand Rate (spaces/unit)
Greenbriar Apartments	122	Saturday, 16:00	30	15	0.123

Table 16 – Residential Visitor Proxy Survey Site Data

6.3.2 Analysis - Resident Visitor Parking

The anticipated visitor parking demand for the subject site is anticipated to be approximately 0.123 spaces per unit, based on the proxy parking counts. For this site, it is recommended that the visitor parking supply is designed to exceed the anticipated peak visitor parking demand, as estimated using the proxy parking counts. It is recommended that an 85% visitor parking utilization is adopted as the design target. Consequently, it is recommended that visitor parking is provided at a rate of 0.15 spaces per unit.

It is recommended that the proposed development include 21 visitor parking spaces (143 residential units $x \ 0.15$ spaces per unit). The visitor parking generated by the proposed development is not anticipated to impact the surrounding parking infrastructure within the study area.

6.4 **Apartment Resident Parking**

6.4.1 Apartment Resident Proxy Survey Data

 Table 17 summarizes the resident parking survey data for the proxy site detailed results are provided in Appendix I.

			Resident	Parking		
Proxy Site	Number of Units	Peak Period	Supply (spaces)	Demand (spaces)	Demand Rate (spaces/unit)	
Greenbriar Apartments	122	Saturday, 19:30	190	89	0.730	

 Table 17 – Apartment Resident Proxy Survey Site Data

6.4.2 Analysis – Apartment Resident Parking

In the case of residential visitor parking, when the visitor parking demand exceeds the visitor parking supply, the additional parking demand may result unauthorized parking in nearby parking lots or undesignated areas. Consequently, providing a conservative visitor parking supply as outlined in Section 6.4, will ensure overflow visitor parking issues do not occur. Allocation of resident parking is different than visitor parking. Lowering the resident parking supply, in conjunction with clear communication during sales / rental process and ongoing parking enforcement, can increase development efficiency and provide a form of transportation demand management.

Historically, the cost to buy or rent an apartment or condominium unit has included one or more parking spaces, which provides an incentive for private vehicle ownership. The apartment units in the proposed development will have unbundled parking, which will give the tenant the opportunity to pay only for the number of spaces they need. This technique is a more efficient and fair way to pass the cost for the parking space on to those residents that use them. Another benefit of this strategy is that the use of the parking space is viewed as an additional cost associated with private vehicle ownership.

The Client is committed to providing clear messaging in the sales agreement, which will inform buyers / renters that additional parking is not guaranteed and regular enforcement by the property manager will occur to ensure there is no misuse of parking within the site.

With the above-noted resident parking controls, the supply of resident parking becomes a function of marketability. In the case of the proposed development, based on our correspondence with the Client and their sales team, it is our expectation that the majority of the apartment units will be purchased or rented by owners that require one or no parking spaces per unit.

Based on the proxy parking data, the apartment units in the proposed development would generate a peak parking demand of 105 spaces (143 units x 0.73 spaces per unit). Based on our review of the study area, development intent and local parking controls, a minimum resident parking supply of 130 spaces is recommended. This would result in a parking supply that is 24% greater than the anticipated parking demand.

6.5 **Recommended Minimum Parking Supply**

Based on our analysis of the residential proxy parking data, the recommended parking breakdown is provided in **Table 18**. In the event of overflow parking in the proposed development, Section 6.6 identifies the on-street parking available in the study area.

Unit Type	Proposed Units	Resident Parking	Visitor Parking	Total Parking
Residential Dwelling, Multiple	143	130 spaces (0.91 sp./unit)	21 spaces (0.15 sp./unit)	151 spaces
Residential Dwelling, Townhouse	36	36 spaces (1 sp./unit)	-	36 spaces
TOTAL	179	166 spaces	21 spaces	187 spaces
Accessible	2 spaces pl	7 spaces		

 Table 18 – Recommended Minimum Parking Supply

6.6 **Overflow Parking Control**

In the unlikely event of overflow parking at the subject site, a review of nearby on-street parking is noted. On-street parking is permitted on both sides of Estelle Street, Rheal Street and Hines Street. It is noted there is no sidewalk on Estelle Street and sidewalks are recommended on Estelle Street as noted in Section 7.0.

7 **Transportation Demand Management**

As noted above, the recommended minimum parking supply will provide the necessary capacity to accommodate the typical peak parking demand for the proposed development; however, it is acknowledged that the recommended parking supply is approximately 25% less than the Zoning Bylaw requirement. In conjunction with the reduced resident parking supply, the following transportation demand management measures are recommended as part of the proposed development:

- Construct sidewalk on the west side of Estelle Street extending from Bancroft Drive to Rheal Street;
- The proposed development includes an internal sidewalk network with pedestrian connections to the proposed sidewalk on Estelle Street and the existing municipal pedestrian infrastructure on Bancroft Drive and Rheal Street;
- Provide pedestrian connection from the proposed development to the bus stop located on Bancroft Drive;
- The proposed development includes 90 bicycle parking spaces;
- An information display board will be provided in a central location in the apartment buildings to display travel information such as bicycle maps, local transit map/schedule and other relevant information; and
- Information packages will be distributed to new residents including transit and cycling maps;

8 Summary

Tulloch Engineering Inc. retained **JD Engineering** to prepare this traffic impact study in support of the proposed residential development located on the west side of Estelle Street midblock between Bancroft Drive and Rheal Street, in the City of Greater Sudbury. The proposed Draft Plan by Tulloch is shown in **Appendix A**. This chapter summarizes the conclusions and recommendations from the study.

The proposed development is anticipated to consist of three 5-storey buildings with a total of 120 units and 59 townhouse units.

- 1. The proposed development is expected to generate a total of 73 AM and 90 PM peak hour trips.
- 2. An intersection operation analysis was completed at the study area intersections, using the existing (2021) and background (2024 & 2029) traffic volumes, with the adjacent development traffic. This enabled a review of existing and future traffic deficiencies that would be present without the influence of the proposed development. The following improvements are recommended prior to build-out of the Kingsway Entertainment District and Arena / Event Centre and future business park development:

Background (2024) Traffic Volumes

- Street 'C' & Levesque Street / Kingsway
 - Street 'C' be constructed with a left, through and right turn lane configuration;
 - The southbound left turn is constructed with a 75 metre storage length and 55 metre taper length;
 - Adjust eastbound and northbound signal heads to accommodate a protected and permissive left turn signal phase; and
 - Adjust and repaint northbound lane pavement markings to provide 100 metre parallel length and 30 metre taper length for the northbound left turn lane.
- 3. An estimate of the amount of traffic that would be generated by the Subject Site was prepared and assigned to the study area streets and intersections.
- 4. An intersection operation analysis was completed under total (2024 & 2029) traffic volumes with the proposed development operational at the study area intersections. No further infrastructure improvements were required as a result of the analysis.
- 5. A supplementary analysis was completed to assess the recommendation for the eastbound double left turn lane at the Street 'C' & Levesque Street / Kingsway intersection, as recommended in the Kingsway Entertainment District and Arena / Event Centre Traffic Impact Study. Based on our review, there are no issues with the recommendation for this improvement.
- 6. The North Access and South Access will operate efficiently as a full-movement access driveways, with one-way stop control for eastbound movements. No lane improvements are recommended on Estelle Street at the North Access and South Access. The above-noted configuration will provide the necessary capacity to service the proposed development.
- 7. The sight distance available for the proposed North Access and South Access meets the minimum stopping sight distance requirements.
- 8. The Developer is committed to providing clear messaging in the sales agreement, which will inform tenants that additional parking is not guaranteed and regular enforcement by the property manager will occur to ensure there is no misuse of parking within the site.

9. Based on our analysis of the residential visitor proxy parking data and the resident parking survey, the proposed parking breakdown, summarized in Table A will provide the necessary capacity to support the proposed.

Unit Type	Proposed Units	Resident Parking	Visitor Parking	Total Parking
Residential Dwelling, Multiple	143	130 spaces (0.91 sp./unit)	21 spaces (0.15 sp./unit)	151 spaces
Residential Dwelling, Townhouse	36	36 spaces (1 sp./unit)	-	36 spaces
TOTAL	179	166 spaces	21 spaces	187 spaces
Accessible	2 spaces pl	us 1 space for ea greater than 10	nch additional 50 spaces 00 spaces	7 spaces

Table A – Recommended Minimum Parking Supply

- 10. Construction of a sidewalk is recommended on the west side of Estelle Street extending from Bancroft Drive to Rheal Street, to improve pedestrian connectivity.
- 11. In summary, the proposed development will not cause any operational issues and will not add significant delay or congestion to the local roadway network; furthermore, the above-noted parking supply will provide the necessary capacity to accommodate the typical peak parking demand for the proposed development.

Estelle Street Development Tulloch Engineering Inc. JDE-20112 Date: March 5th, 2021

Appendix A – Site Plan

	SUDBURY, C	
ZONING CONCEPT PLAN	, ONTARIO	ZONIGE & ZONIGE BEVLW Image: Constraint of the second s
	ENGINEER'S SEAL	NTIS
sher C1	PROJECT No. 19-1564	
	1:750 D.R. T.M. / K.J. AUGUST 26, 2020 19:1564	

Estelle Street Development Tulloch Engineering Inc. JDE-20112 Date: March 5th, 2021

Appendix B – Adjacent Development Excerpts

Estelle Street Development Tulloch Engineering Inc. JDE-20112 Date: March 5th, 2021

KED TIS

CITY OF GREATER SUDBURY Kingsway Sports and Entertainment Complex

Traffic Impact Study

4.0 Site Traffic and Parking Generation

4.1 Trip Generation

The amount of traffic that will be generated by the site was estimated from a combination of sources:

- Trip generation and auto occupancy surveys undertaken at existing sites;
- Trip generation equations published by the Institute of Transportation Engineers (ITE) in the *Trip Generation Manual* (9th edition); and
- First principles calculations based on anticipated site operations.

4.1.1 Arena

Trips generated by the arena were calculated from first principles.

Typically the doors will open one hour prior to the start of a game (or other event). The majority of spectators are projected to arrive within this one-hour period. Prior analyses undertaken by WSP Canada in June 2017 (i.e., the traffic report undertaken during the site selection process) assumed 88% (seven-eighths) of traffic would arrive within this one-hour period, with the remainder arriving either before this period or after it (i.e., arriving late). This figure was compared against typical arrival and departure patterns published by ITE in *Traffic Considerations for Special Events*, which indicated approximately 79% of traffic would arrive within the peak hour (see breakdown by 10-minute intervals shown in *Table 19*). The lower 79% figure has been applied to the analyses, reflecting the greater potential for restaurants and other amenities to draw event goers to the site ahead of time as the business park develops.

Following the conclusion of a game or event, all spectators are assumed to depart within a one-hour period.

An auto occupancy of 2.19 spectators per vehicle has been applied. This occupancy level was determined through surveys undertaken by City staff prior to the start of two Wolves games in 2017 (Friday, September 29; Sunday, October 1). The survey results are summarized in *Table 20*.

Time before event <i>(minutes)</i>	Propor ti on of attendees arriving in interval	Time a ft er event <i>(minutes</i>)	Propor ti on of att endees depar ti ng in interval
110–100	4%	0–10	19%
100–90	4%	10–20	11%
90–80	4%	20–30	25%
80–70	4%	30–40	25%
70–60	5%	40–50	10%
60–50	7%	50–60	6%
50-40	10%	60–70	4%
40-30	15%		
30–20	17%		
20–10	16%		
10–0	14%		
Peak hour	79%	Peak hour	96%

n Special Events

Source: Traffic Considerations for Special Events, ITE, 1976. Data published in "Traffic Impact Study of the Arena / Convention Center and Downtown Events Center Sites." City of Sioux Falls Traffic Engineering, April 2011.

Auto occupancy	Number of	of vehicles
Auto occupancy	Friday	Sunday
1 spectator	41	32
2 spectators	75	50
3 spectators	27	19
4 spectators	12	16
5 spectators	7	1
Total vehicles	162	118
Total spectators	355	258
Avg. spectators/vehicle	2.19	2.19

Table 20: Auto Occupancy Survey Results at 2017 Sudbury Wolves Games

An adjustment was made to account for trips made by non-auto modes. Given the site's distance from the urban area, it is assumed that the majority of non-auto trips will be made by transit. For an estimate of the potential level of transit ridership, modal split data from the most recent census were reviewed (the 2011 National Household Survey). Over the Sudbury Census Metropolitan Area, 4.5% of respondents reported commuting to work via public transit in the 2011 NHS; in the 2006 census, the percentage was 5.2%. The modal split varies within the City; the central portion of the city experiences transit modal splits of 10% or more, whereas the modal split in the eastern part of the city is generally closer to 5%. It was assumed that 5% of spectators would travel to and from the site via public transit.

It is possible that some spectators may be dropped off prior to the start of an event and then picked up afterward. No adjustment was made for this scenario. There would be no impact on the number of peak direction trips, although there could be an increase in the number of counter-peak direction trips. It was assumed that the proportion of pick-up and drop-off traffic would be low enough as to not substantially affect intersection operations.

The analyses assumed attendance equivalent to the seating capacity for a hockey game (5,800 seats). The capacity for concerts could be higher, potentially in the order of 6,500 spectators, depending on parameters such as the configuration of the stage and temporary seating on the arena floor. However, it was assumed that this type of event would be infrequent enough that the hockey capacity would govern the analyses.

Given that the analyses are based on a sold-out event at the arena, they can be considered to be conservative. As a check, historical attendance figures were reviewed at two levels:

- Attendance for all OHL teams in the 2016-17 season; and
- Attendance for the Wolves over the past six seasons.

Attendance figures were obtained for each game³ and sorted from highest to lowest attendance. The attendance data are illustrated graphically in *Appendix D*. The attendance data for the Wolves were reviewed as a percentage of the existing Sudbury Community Arena seating capacity, to illustrate the variability in attendance from one game to another and from one season to another. The attendance data for the other teams were reviewed both at an absolute level (to provide context as to how the proposed increased seating capacity at the new arena would compare to the existing attendance from one game to another level (to determine the variability in attendance from one game to another).

Wolves games have typically drawn approximately 3,000 to 4,000 spectators over the past six seasons, or approximately 65–85% of the current arena's seating capacity. Approximately 25% of games in the 2011–12 through 2014–15 seasons attracted attendance in excess of this level, and typically 5–10% of games per season draw a capacity crowd.

Across the league, the majority of teams experienced typical attendance levels between 2,500 and 4,000 spectators per game for most of the 2016–17 season. Attendance in London and Kitchener was typically in the order of 7,000 per game or higher, and five other teams also had games with attendance levels of 5,800 or more (Windsor; Ottawa; Hamilton; Oshawa; Erie), but in most cases those higher-attendance games were only approximately 25% to 35% of the season, and attendance for the rest of the season was around 5,000 spectators per game or fewer.

³ All attendance figures obtained from *The Internet Hockey Database* (http://www.hockeydb.com).

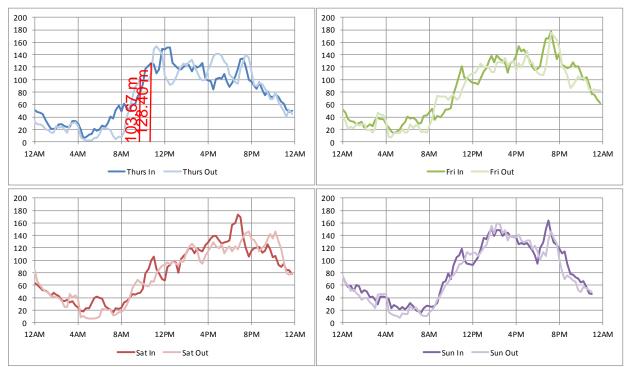
Most teams have experienced levels of variation in game-to-game attendance similar to the pattern in Wolves attendance. Six teams experienced near-maximum attendance for at least one-third to one-half of the season (London, Kitchener, Niagara, Barrie, Oshawa, Owen Sound). The majority of teams (including the Wolves) experienced greater level of variability, with approximately 75% of games having attendance 85% or less of their highest-attendance game.

The review of historical Wolves and OHL attendance figures indicates that basing the analyses on a soldout game can be considered conservative from two perspectives:

- Current Wolves attendance is typically in the range of 3,000 to 4,000 spectators, and most other OHL teams typically draw similar attendance levels; and
- Most teams draw 5 to 10 near-capacity crowds, but attendance at the majority of games is usually 85% of capacity or less.

Table 21 summarizes the number of vehicle trips generated by the arena before and after an event and outlines how those numbers were derived.

	Peak direc ti on,	peak hour trips
	Pre-game inbound	Post-game outbound
Number of spectators	5,800	5,800
% traveling via transit	5%	5%
# traveling via transit	290	290
% traveling via auto	95%	95%
# traveling via auto	5,510	5,510
Average auto occupancy	2.19	2.19
# of auto trips	2,515	2,515
% traveling during peak hour	79%	100%
Peak hour auto trips	1,985	2,515


Table 21: Arena Trip Generation

While the arena will primarily impact traffic volumes during the pre-game and post-game periods (or before and after other similar special events), the ice surface would likely be rented out for other purposes at other times (as is the case with the existing Sudbury Community Arena). It would therefore generate some traffic during the weekday PM and Saturday peak hours, although at a substantially lower level than pre- and post-game periods. The weekday PM and Saturday peak hour trip generation for the arena is discussed in *Section 4.1.4*.

4.1.2 Casino

Trip generation surveys were undertaken at the Point Edward Casino in Sarnia between Thursday, September 28 and Sunday, October 1, 2017. This site was selected as a comparable proxy to the proposed development, and includes 576 gaming positions (slot machines and table games) as well as restaurant space. The number of vehicles entering and exiting each parking lot was surveyed continuously over a four-day period using automatic traffic recorders (ATRs). *Figure 7* illustrates the variation in hourly traffic volumes entering and exiting the site throughout the survey period.

Note: Curves illustrate hourly volumes in rolling 15-minute intervals.

The busiest one-hour interval was on Friday evening between 7:15 and 8:15, when a total of 353 vehicles entered and exited the site.

Trip generation rates were derived by correlating the number of trips with the number of gaming positions. Since the arena will govern traffic conditions on the approach routes on days when a game or other event is scheduled, trip generation rates were calculated for the pre-game and post-game peak hours rather than for the specific casino peak hours. At Point Edward, there are currently 576 gaming positions. Applying this number to the surveyed demand profile results in the following trip generation rates:

- 0.49 trips per gaming position during the weekday PM peak hour;
- 0.40 trips per gaming position during the weekday pre-game peak hour;
- 0.37 trips per gaming position during the weekday post-game peak hour; and
- 0.34 trips per gaming position during the Saturday midday peak hour.

Although the trip generation rates are correlated to the number of gaming positions on site, they also include trips generated by restaurant space within the casino.

Table 22 outlines the trip generation rates applied to the casino component of the site, and the resulting number of trips generated during each analysis hour.

	Weekday PM peak hour			Weekday pre-game peak hour				lay post eak hou	•	Saturday peak hour		
	Total In Out			Total	In	Out	Total	In	Out	Total	In	Out
Trip generation rate (trips per gaming position)	0.49	0.24	0.25	0.40	0.21	0.19	0.37	0.19	0.18	0.34	0.17	0.17
Trips generated (780 gaming positions)	380	185	195	310	160	150	290	150	140	265	135	130

Table 22: Casino Trip Generation

4.1.3 Hotel

Trips were generated for the hotel based on ITE trip generation rates (ITE land use code 310) as follows:

- The ITE PM peak hour trip generation rate was assumed to be applicable to the weekday pre-game peak hour.
- The ITE Saturday peak hour trip generation rate was applied to the Saturday peak hour analyses.
- For the weekday post-game peak hour, no ITE data were available. Instead, it was assumed that the inbound peak hour trip generation rate would be one half of the PM peak hour inbound trip generation rate, and the number of outbound trips would be negligible.

Table 23 outlines the trip generation rates applied to the hotel component of the site, and the resulting number of trips generated during each analysis hour.

		ekday PM Ime peak			day post- peak hour	-	Saturday peak hour			
	Total	In	Out	Total	In	Out	Total In Out			
Trip generation rate (trips per room)	0.60	0.31	0.29	0.15	0.15	0.00	0.72	0.40	0.32	
Trips generated (200 rooms)	120	60	60	30	30	0	145	80	65	

Table 23: Hotel Trip Generation

4.1.4 Twin Pad Arena

As a subsequent development phase, consideration has been given to the potential for an additional twin pad arena on the subject lands. The site trip generation accounts for the twin pad arena being in place by the 2022 horizon.

For the PM peak hour, the City of Greater Sudbury provided a weekday PM peak period traffic count undertaken at the driveway to the Countryside Sports Complex twin pad arena as a comparable proxy site. The Countryside arenas generated 65 trips during the weekday PM peak hour (25 inbound trips and 40 outbound trips). A similar volume of traffic was applied to the twin pad arena within the subject site.

For other peak hours, the following assumptions and parameters were applied:

- There are two rinks, each of which will accommodate two teams;
- Each team will have 20 vehicles (including a small allowance for coaching staff and additional attendees);
- Ice time will be scheduled in one-hour increments (i.e., the analysis hour will include teams leaving from the preceding hour and teams arriving for the following hour);
- The weekday pre-game peak hour will include inbound trips generated from first principles, and 25 outbound trips (i.e., the inbound trips from the PM peak hour);
- The weekday post-game peak hour will include outbound trips but no inbound trips (no ice time scheduled after 11:00 PM);
- The Saturday peak hour will include both inbound and outbound trips.

On this basis, the twin pad arena will generate the following number of trips:

- 80 inbound trips and 25 outbound trips during the weekday pre-game peak hour;
- 80 outbound trips during the weekday post-game peak hour; and
- 80 inbound trips and 80 outbound trips during the Saturday peak hour.

Further, it is anticipated that the main arena would be rented at times when not required for a major event. City of Greater Sudbury staff indicated that similar assumptions about type and magnitude of use could be assumed as for the twin pad arena based on typical practice at the existing Sudbury Community Arena, although the volume would be reduced by half given that only one ice surface is available.

On this basis, the main arena would generate the following trips during non-event times:

- 15 inbound and 20 outbound trips during the weekday PM peak hour; and
- 40 inbound and 40 outbound trips during the Saturday peak hour.

4.1.5 Business Park

The remaining industrial subdivision blocks to the north and west of Street A and to the east of Street C are anticipated to eventually develop for a range of employment uses. However, the specific uses and timeline for development are unknown at this time and will be dependent on what the market will support. Given the uncertainty surrounding the eventual nature of the surrounding blocks, trips were generated based on rates for a generic business park rather than for more specific land uses. The ITE trip generation rates for business parks reflect larger sites containing multiple blocks and a range of employment uses, and therefore are a reasonably good representation of the subject lands.

The ITE trip generation data are presented in terms of trips generated during the full weekday; trips generated during the weekday PM peak hour (based on the peak hour on the surrounding street network); and trips generated during the Saturday peak hour. The weekday rates overstate traffic volumes generated by the business park during the weekday pre- and post-game peak hours, which will occur after the commuter peak hours. To derive traffic volumes generated during these off-peak hours, an hourly distribution of traffic for office uses (i.e., employment) published in the January 2015 edition of *ITE Journal* was referenced. The hourly distributions published in *ITE Journal* are reproduced in *Table 24*; the full article is presented in *Appendix E*.

Table 25 summarizes the trip generation rates estimated for the subject site during each analysis period and how they were derived.

Table 26 outlines the trip generation rates applied to the business park component of the site, and the resulting number of trips generated during each analysis hour.

	Average	weekday	Average	Saturday	Average	Sunday
Time	% of 24-hour entering tra ffi c	% of 24-hour exi ti ng tra ffi c	% of 24-hour entering tra ffi c	% of 24-hour exi ti ng tra ffi c	% of 24-hour entering tra ffi c	% of 24-hour exi ti ng tra ffi c
6–7 a.m.	4.6	0.7	4.1	1.4	1.8	2.4
7–8 a.m.	14.9	1.9	5.4	2.5	3.8	1.2
8–9 a.m.	20.7	3	9.1	1.5	6	2.9
9–10 a.m.	8.2	3.2	7.2	3.9	6.6	3.8
10–11 a.m.	5	3.9	6.8	4.6	9.7	7.5
11–12 p.m.	5.1	8.6	7.1	11.3	8.9	9.6
12–1 p.m.	8.7	10.5	8.1	14	6.9	9.1
1–2 p.m.	10	6.6	7.3	8.3	8.6	12
2–3 p.m.	5.9	6.3	7.6	7.7	6.6	8.2
3–4 p.m.	4.3	9.5	6	9.6	4.6	6.3
4–5 p.m.	3.4	15.4	3.1	7.9	5.5	7.5
5–6 p.m.	2.5	16.5	3.2	6.9	3.1	6.7
6–7 p.m.	1.4	5.5	2.5	3.2	3.5	4.1
7–8 p.m.	0.9	2.5	2	2.2	2.7	2.9
8–9 p.m.	0.7	1.6	2.4	2.1	3.3	4.3
9–10 p.m.	0.6	1.1	1.4	1.4	3.1	3.1
10 p.m.–6 a.m.	3.2	3.2	16.9	11.4	15.3	8.4

Table 24: Typical Hourly Distribution of Trips Generated by Office Uses

Source: Aaron T. Zimmeran, PTP. "Hourly Variation in Trip Generation for Office and Residential Land Uses." ITE Journal, January 2015, pp. 20-22.

Table 25: Development of Business Park Peak Hour Trip Generation Rates

		Weekday PM peak hour			Weekday pre-game peak hour			day post beak hou	0	Saturday peak hour		
	Total	In	Out	Total	In	Out	Total	In	Out	Total	In	Out
24-hour rate (Trip Generation Manual)				149.8	74.9	74.9	149.8	74.9	74.9	32.6	16.3	16.3
Design hour (ITE Journal)		n/a		6-7 PM				9-10 PM		Noon-1 PM		
% of traffic during design hour (<i>ITE Journal</i>)				3.5%	1.4%	5.5%	0.8%	0.5%	1.0%	11.1%	8.1%	14.0%
Design hour rate (calculated)*	16.84	3.37	13.47	5.17	1.05	4.12	1.12	0.37	0.75	3.60	1.32	2.28

<u>Note:</u> Trip generation rates presented as trips per acre (net of road rights-of-way and other undevelopable blocks). *PM peak hour rates obtained from Trip Generation Manual; all other peak hour rates calculated.

Table 26: Business Park Trip Generation

		Weekday PM peak hour			Weekday pre-game peak hour			Weekday post-game peak hour			Saturday peak hour		
	Total	In	Out	Total	In	Out	Total	In	Out	Total	In	Out	
Trip generation rate (trips per acre)	16.84	3.37	13.47	5.17	1.05	4.12	1.12	0.37	0.75	3.60	1.32	2.28	
Trips generated (93.67 acres)	1,575	315	1,260	485	100	385	105	35	70	340	125	215	

4.1.6 Interaction Between Complementary Land Uses

It is anticipated that some of the trips generated by one use within the site may originate at another use also within the site. The following potential forms of interaction between complementary land uses were considered:

Business Park to Arena:

It was assumed that approximately 10% of event goers would be drawn from the surrounding business park. It was also assumed that approximately 10% of business park traffic would be diverted to the arena (including employees that would otherwise leave the study area prior to 6:00 PM, but remain onsite to attend a game or other event). Both types of interaction have been accounted for in a reduction in the pre-game peak hour trips generated by the business park (outbound) and by the arena (inbound).

Business Park to Casino:

It was assumed that approximately 5% of business park traffic would be destined to the casino. This interaction has been accounted for in a 5% reduction of outbound business park traffic during the PM and pre-game peak hours. A corresponding reduction has not been applied to inbound casino trips because it is assumed that the increase in daytime population within the study area would result in an increase in activity at the casino, rather than displacing other users.

Casino to Arena:

While it is expected that there will be interaction between these two uses, a reduction has not been applied because it is assumed that there would be additional activity at the casino on event nights. The casino and associated uses could result in event goers traveling to the study area prior to the pre-game peak hour; this has been accounted for explicitly in the arena trip generation forecasts.

4.1.7 Trip Generation Summary

Table 27 summarizes the number of trips generated by the subject site (including the surrounding business park).

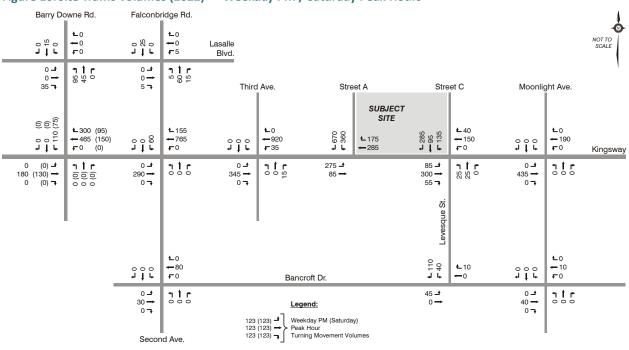
Table 27: Trip Generation Summary

	Weekday PM peak hour				Weekday pre-game peak hour			lay pos eak ho	t-game ur	Saturday peak hour		
	Total	In	Out	Total	In	Out	Total	In	Out	Total	In	Out
Arena	35	15	20	1,985	1,985	0	2,515	0	2,515	80	40	40
Casino	380	185	195	310	160	150	290	150	140	265	135	130
Hotel	120	60	60	120	60	60	30	30	0	145	80	65
Twin pad arena	65	25	40	105	80	25	80	0	80	160	80	80
Business park	1,575	315	1,260	485	100	385	105	35	70	340	125	215
Subtotal:	2,175	600	1,575	3,005	2,385	620	3,020	215	2,805	990	460	530
Interac ti on reduc ti ons:												
Business park to arena	0	0	0	-75	0	-40	0	0	0	0	0	0
Arena from business park	0	0	0	-200	-200	0	0	0	0	0	0	0
Business park to casino	-65	0	-65	-40	0	-20	0	0	0	0	0	0
Total net site trips:	2,110	600	1,510	2,690	2,185	560	3,020	215	2,805	990	460	530

The site is anticipated to generate approximately 1,510 trips during a typical (non-event) PM peak hour; 2,690 trips in the hour before a Friday evening game; 3,020 trips in the hour following a Friday evening game; and 990 trips during the Saturday peak hour. These estimates are subject to change depending on the eventual land uses and magnitude of development in the business park.

4.2 Parking Generation

The anticipated parking requirements for the site were calculated for each use, and these requirements were then used to identify the approximate area required for parking lots within the site. The approximate location and size of these individual parking lots, along with the anticipated access points to Streets A and C, were then used to inform the assignment of vehicle trips entering and exiting the site from the Kingsway.


Parking requirements were determined through a review of the City's Zoning By-Law 2010-100Z ("the ZBL"), as well as through a first principles assessment.

4.2.1 Arena

Parking requirements for the arena were calculated from first principles using the same data from the trip generation calculations.

event days. *Figure 11* illustrates the site trips for these uses during the Friday pre- and post-game peak hours.

Figure 10: Site Traffic Volumes (2022) — Weekday PM / Saturday Peak Hours

	Barry Do	owne Rd.	Falconbr	idge Rd.									1
	↓ ↓ 100 100	€0 ←0 ₹0	1	€0 ←0 ₣10	Lasalle Blvd.								NOT TO SCALE
	0 _1 0 → 170 ¬	┑╽┍ ᅇᅆᅇ	0 _1 0 → 10 ∓	זן ר מי <u>מ</u> יס	Third	l Ave.	Stre	et A	Stre	et C	Moonlig	ght Ave.	
	+ + 0 + 120	€_90 ← 165 ∓ 0	+ 1 1 0 1 365	€45 ←255 ₣0	↓↓ 0000 000000000000000000000000000000	1 0 (0) ←300 (1675 7 10 (30)	€ ► 260 (905) ► 155 (290)	SUBJEC SITE ← 260 (85) ← 75 (805)	► 95 (805) ← 20 (345) ← 35 (460)	▲350 (5) ←245 (70) ₣0 (0)	• † r • • •	€0 ←595 ೯0	Kingsway
-	0 - 1 500 0 -	<u>n t r</u> 000	• • 0 → 020 • 0	<u>11r</u>	0 (0) → 1285 (120) → 0 (0) ¬	1 1 7 (2) (3) (4) (2) (3) (4) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	720 (120) 590 (5)		590 (5) 1 130 (275) ↑ 25 (15) 7 (15) 7 (15) 7	20 (15) L 250 (0) J 1 0 (0) J	0 _ 165 → 0 ¬	<u>1 † r</u>	
			* 1 r 0 0 0	€0 ←25 ₣0		Banc	roft Dr.		+ 45 + 0 10	€60 ←0	┙┃┡ ○○○	1 0 ← 60 ₣ 0	
			0 - → 185 - → 0 - → Secon	1 1 F	123 123 123	(123) → Wee (123) → pre-g	end: kday game (post-game) c hour ng movement volu		210 - 0 →		0 → 10 → 0 ¬	<u>" r</u> 000	

City of Greater Sudbury Kingsway Sports and Entertainment Complex — Traffic Impact Study December 2017 — 17-6373

The PM peak hour conditions are largely governed by the business park. The business park will be built out incrementally, and the forecasted volumes would not materialize until full build-out. Further, the forecasted volumes are based on a generic "business park" trip generation rate, while the actual traffic volumes will depend on the specific land uses (and magnitude) that are developed within the individual lots. The incremental development will allow conditions to be monitored as additional lots are developed and occupied.

6.7.4 Recommended Mitigation

A two-staged approach to mitigating traffic capacity constraints has been identified, consisting of measures that can be implemented using existing infrastructure (or that can be coordinated with site construction), and measures that would involve more substantial planning, design and/or construction.

The first set of mitigation consists of maximizing capacity at existing intersections to the west of the site through signal timing and/or phasing adjustments, along with localized road modifications on the Kingsway at the new Street A and Street C (Levesque Street) intersections. This would include the following:

- Signal timing adjustments at the Kingsway and Lasalle Boulevard intersections with Barry Downe Road and with Falconbridge Road, as well as at Bancroft Drive and Second Avenue;
- New signal heads at the Kingsway and Barry Downe Road to accommodate a northbound right turn overlap phase;
- Consideration of deactivating the southbound left turn phase at Bancroft Drive and Second Avenue; and
- Provision of eastbound dual left turn lanes (operating under fully protected phasing) and westbound right turn lanes on the Kingsway at Streets A and C.

These adjustments would result in some movements remaining over capacity at the busy Kingsway intersections with Barry Downe Road and Falconbridge Road during the PM peak hour, but this would not materialize until a substantial portion of the business park has been built out. There would also be capacity constraints at those intersections during the pre-game peak hour, but those would be less frequent occurrences and the traffic volumes would be lower than forecast for the majority of games that are not sold out.

Mitigation through optimization of existing infrastructure would support the development of the main site (arena, casino, hotel and twin pads) and part of the business park. However, the traffic generated by full build-out of the business park would require more substantial infrastructure modifications to mitigate constraints on the Kingsway and on Barry Downe Road west of the site. The City's TMP identifies new roadway links (the northerly extension of Street C and westerly connection to Falconbridge Road; bypass around New Sudbury from Highway 17 to Maley Drive) that would provide alternate routes to and from the site and allow site traffic to avoid major intersections on the Kingsway west of the site. Traffic conditions on the surrounding road network should be regularly monitored as

the business park is incrementally developed to confirm that timing required for these new roadway links.

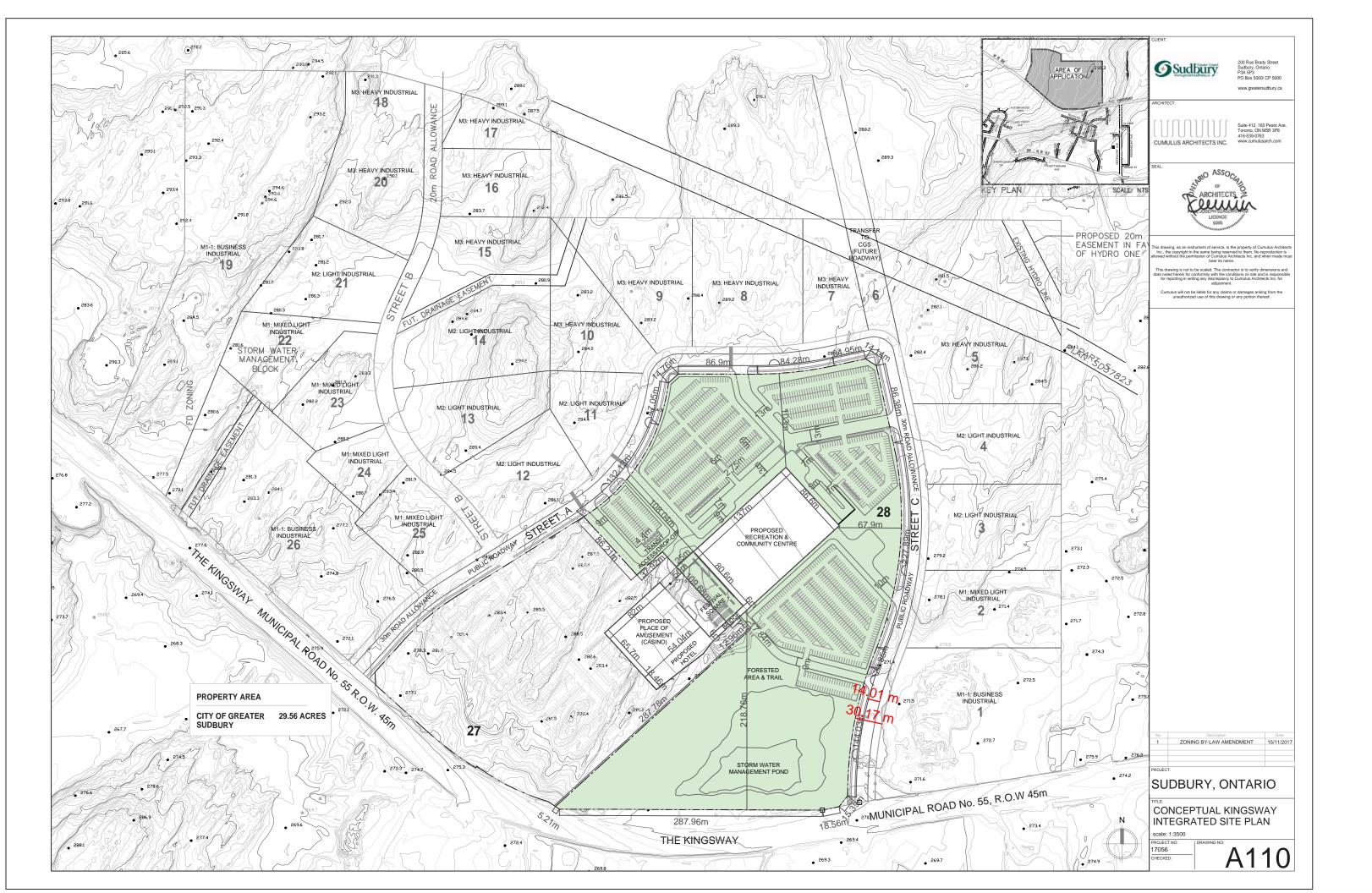
6.8 Transportation Demand Management

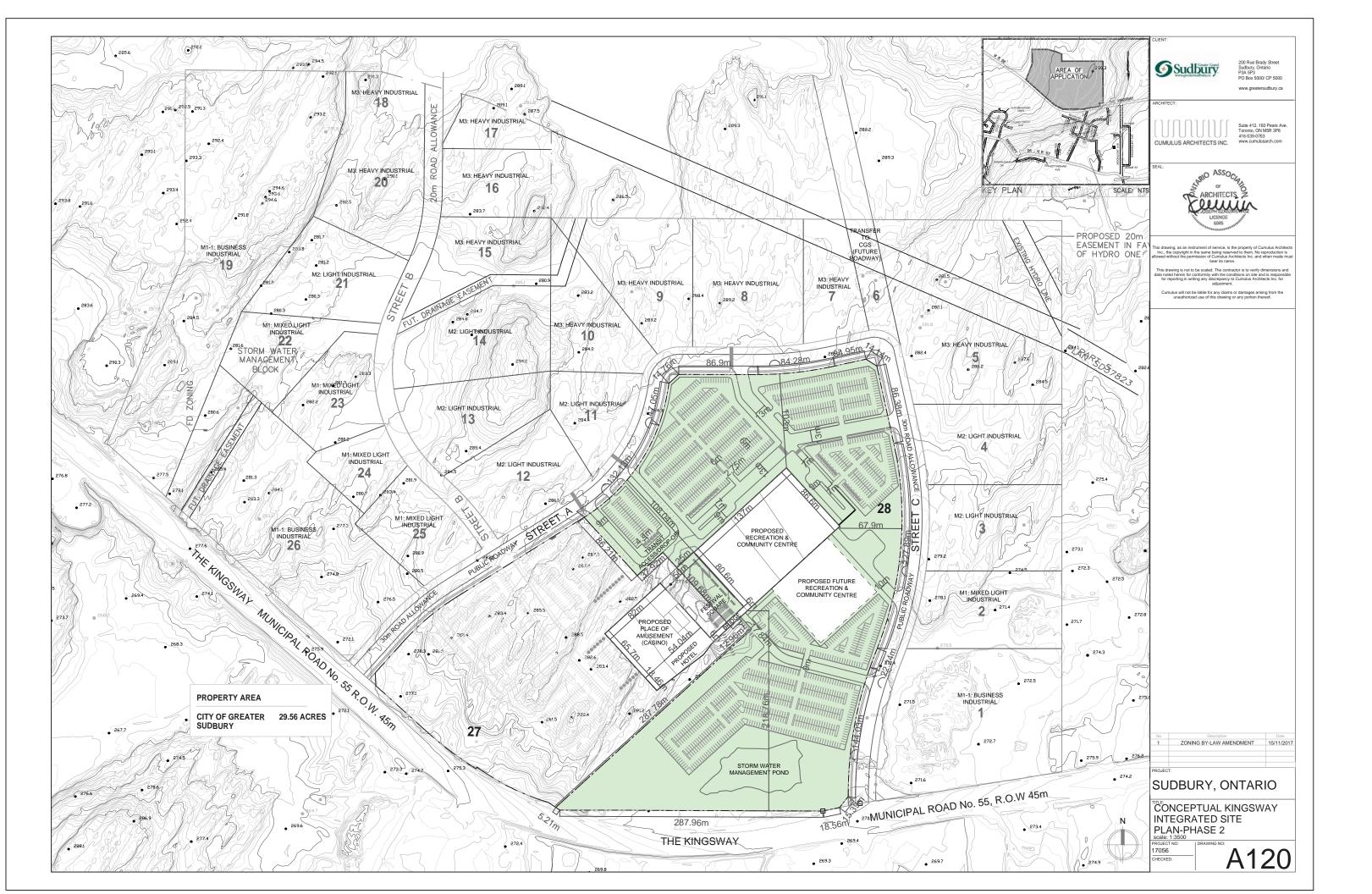
Given the volume of traffic generated by the site prior to and following an event, as well as other traffic constraints in the west end of the study area, consideration should be given to implementing measures to encourage a reduction in the number of vehicles being driven to the site. This could include measures to encourage spectators to travel via non-auto modes, and measures to encourage increased vehicle occupancy (more spectators per vehicle). In addition to reducing traffic pressure on the road network and decreasing the time required to clear the site after an event, reduced auto travel would reduce the required parking supply and potentially free up additional land for development within the business park.

A pick-up and drop-off loop is proposed in front of the main entrances to the arena and casino. It is recommended that this loop be used for staging of shuttle buses before and after major events. The loop would be physically separated from other parking areas to insulate shuttle movements from traffic queues within the site; installation of traffic signals at the bus loop exit would further prioritize bus movements onto Street A over other vehicles exiting from site driveways farther to the east.

Shuttles would provide direct connections to the downtown Sudbury Transit terminal, and potentially also to the New Sudbury Centre terminus. Riders would be able to connect to and from other local routes converging at those two hubs. Consideration should be given to operating "extra" runs on key local routes serving those terminals, both to provide increased capacity for the additional riders and to reduce the waiting time to transfer between the local routes and the express shuttle. Consideration should also be given to allowing ticketholders to travel for free or a reduced fare.

It is also recommended that measures be explored to encourage increased vehicle occupancy, such as the designation of preferred parking areas for vehicles carrying a certain number of spectators (e.g., a "four-plus" parking area).




Appendix A

Proposed Site Plan

Estelle Street Development Tulloch Engineering Inc. JDE-20112 Date: March 5th, 2021

KED TIS Addendum

MEMO

TO:	David Shelsted, MBA, P. Eng. Director of Roads, City of Greater Sudbury
FROM:	Mike Walters, P. Eng.
DATE:	March 9, 2018
SUBJECT:	Kingsway Sports and Entertainment Complex Tra ffi c Impact Study Addendum
OUR FILE:	17-6373

This memo has been prepared as an addendum to the December 2017 traffic impact study (TIS), and provides additional information and responses to the comments provided by the City of Greater Sudbury on the TIS. The City's comments were documented in a memorandum dated February 16, 2018. Also received was a memorandum prepared by WSP, dated February 16, 2018. WSP was retained by the City of Greater Sudbury to provide an independent peer review of the TIS. Both the City's comments and WSP's comments touch on largely the same points. That said, the comments have been separated out and addressed in this addendum.

The proposed site plan is provided for reference in *Attachment 1*.

1.0 TIS Comments

The TIS comments from the City focused on:

- Ø Arrival rates for motorists prior to an event. Justification needs to be provided for the arrival rate assumed in the TIS report
- Ø Justification needs to be provided for interaction reductions that are assumed in the TIS report
- Ø Details on the types of agreements that will need to be in place and how they will be enforced to ensure parking is available on event nights needs to be provided
- Ø Identify the amount of site development that can occur prior to the surrounding road intersections operating over capacity and detail what measures could be implemented to mitigate these capacity constraints
- Ø Provide a phasing plan which indicates how much more additional development can occur with the proposed road links added
- Ø Provide a justification for why a dual left turn lane is required on Kingsway
- Ø Discuss the expected delay to transit vehicles accessing the site during event nights
- Ø Provide details on the expected queue length, how the bus loop signals will operate and what the expected delay will be for buses exiting the loop
- Ø Provide details on how vehicles, pedestrians and transit buses will circulate in the area of the bus loop. Include details on where fencing will be provided, where the parking lots will exit and where marked crossing areas are proposed. Details must be provided on how site access will be controlled if and when the temporary parking lot areas are developed.

2.2 Interaction Between Land Uses

The December 2017 TIS identified two different types of interaction between complementary land uses within the study area:

- Business park employees staying on-site after work to attend a game or other event; and
- Business park employees staying on-site after work to visit the casino.

The first type of interaction represents a reduction in both the number of outbound business park trips, and the number of inbound arena trips. (The employee is not leaving the site as they normally would after work; a seat at the event is filled by someone who is already on site and does not need to travel on the Kingsway.)

The second type of interaction represents a reduction in the number of outbound business park trips only. Like an employee attending an event, the employee would not be leaving the site as they normally would after work. However, it is assumed that the business park represents an additional market rather than a redistribution of the baseline market.

The interaction calculations were reviewed as part of the comment response, and the calculations for the business park / arena distribution have been adjusted following this review. The procedure for calculating this interaction has been revised as follows:

- The daytime population of the business park has been estimated at approximately 4,000 employees. This calculation has been based upon a comparison of the PM peak hour business park trip generation rates as a function of the total acreage (16.84 trips per acre) vs. the number of employees (0.39 trips per employee). At these rates, both a 93.67-acre business park and a 4,000-employee business park would generate approximately 1,575 vehicle trips during the PM peak hour.
- The population of Greater Sudbury is in the order of 160,000 residents. The daytime population of the adjacent business park (4,000 employees) would be 2.5% of that total population. If event-goers are drawn proportionally according to population, a sold-out 5,800-seat event would draw 2.5% (145 attendees) from the business park. However, the distribution of Wolves season ticket holders is not uniform across the City; some areas are more heavily represented than others. It is anticipated that the adjacent business park would be such an area, given the proximity and relative ease in accessing the site compared to other parts of the city. Therefore, a 2x weighting was applied such that 5% of event-goers, or 290 attendees, are drawn from the business park.
- After applying a 5% modal split reduction, 2.19 vehicle occupancy rate, and 79% peak hour arrival rate, the business park interaction would offset 100 inbound arena trips during the pregame peak hour.
- The 290 attendees would also offset 30 outbound business park trips during the pre-game peak hour. (There would also be additional offset trips during the preceding hours.)

The interaction calculations between the business park and casino have been maintained as in the TIS. Specifically, it has been assumed that 5% of outbound business park trips will be destined to the casino and will therefore remain on site. This equates to 65 trips during the PM peak hour, and 20 trips during the pre-game peak hour. This was felt to be an appropriate reduction, and possibly conservative, considering that the casino will also include restaurant space that will likely be a draw to some

employees at the end of the work day. The trip reduction could also include trips made to complementary uses within the business park; while exact uses have not yet been defined for individual blocks within the business park, it is envisioned that some blocks could be developed with additional uses that may attract employees at the end of the work day.

Table 2 illustrates the updated trip generation figures for the site after accounting for the adjusted interaction percentages during the pre-game peak hour. The effect has been an increase of 75 inbound vehicle trips and an increase of 5 outbound vehicle trips, compared to the December 2017 TIS analyses.

Figure 1 illustrates the adjusted site traffic volumes during the pre-game peak hour, and *Figure 2* illustrates the adjusted total future traffic volumes during the pre-game peak hour. (*Figure 2* also reflects changes to background traffic volumes as outlined in *Section 2.4.*)

		eekday eak ho			day pre- beak hou			lay pos eak ho	t-game ur		aturda eak hou	
	Total	In	Out	Total	In	Out	Total	In	Out	Total	In	Out
Arena	35	15	20	1,985	1,985	0	2,515	0	2,515	80	40	40
Casino	380	185	195	310	160	150	290	150	140	265	135	130
Hotel	120	60	60	120	60	60	30	30	0	145	80	65
Twin pad arena	65	25	40	105	80	25	80	0	80	160	80	80
Business park	1,575	315	1,260	485	100	385	105	35	70	340	125	215
Subtotal:	2,175	600	1,575	3,005	2,385	620	3,020	215	2,805	990	460	530
Interac ti on reduc ti ons:												
Business park to arena	0	0	0	-30	0	-30	0	0	0	0	0	0
Arena from business park	0	0	0	-100	-100	0	0	0	0	0	0	0
Business park to casino	-65	0	-65	-20	0	-20	0	0	0	0	0	0
Total net site trips:	2,110	600	1,510	2,855	2,285	570	3,020	215	2,805	990	460	530

Table 2: Updated Trip Generation

The effect of the additional pre-game trips was reviewed at the Kingsway intersections with Street "A" (see *Table 3*) and with Street "C" / Levesque Street (see *Table 4*). (The additional trips were also included in the analyses of other constrained intersections in New Sudbury, documented in *Section 2.4*.) Intersection analysis worksheets are provided in *Attachment 2*.

once the actual impact of the Maley Drive extension is known and once more details are available regarding the actual land uses proposed in the business park.

2.5 Kingsway Left Turn Lanes

At the two main points of access from the Kingsway (at Street "A" and at Street "C" / Levesque Street), there will be a substantial concentration of eastbound left turn demand prior to an event. The analyses considered intersection configurations with a single left turn lane and with dual left turn lanes on the eastbound Kingsway at both intersections.

Table 12 presents the v/c ratio, average delay, level of service and 95th percentile queue for the key opposing movements in each direction (eastbound left vs. westbound through; northbound left / southbound left) to illustrate the difference between the single and dual eastbound left turn lane configuration.

	Intersection:	Kii	ngsway a	it Street '	'A"	Kir	ngsway a	it Street '	'C"
	Peak hour:	PM	peak	Pre-gan	ne peak	PM	peak	Pre-gar	ne peak
	# of EB le ft turn lanes:	1LT	2LT	1LT	2LT	1LT	2LT	1LT	2LT
Overall	Delay (s/veh)	22.2	26.4	20.3	19.3	17.0	17.5	31.6	28.8
	LOS	С	С	С	В	В	В	С	С
EB left	v/c	0.48	0.58	0.90	0.80	0.23	0.25	0.88	0.77
	Delay (s/veh)	11.7	39.4	30.8	35.9	7.5	32.1	31.4	38.9
	LOS	В	D	С	D	А	С	С	D
	95 th %ile queue (m)	19	40	212	95	11	14	156	78
WB through	v/c	0.88	0.90	0.59	0.50	0.55	0.56	0.69	0.61
	Delay (s/veh)	36.0	39.0	34.7	25.5	15.9	17.6	36.9	29.3
	LOS	D	D	С	С	В	В	D	С
	95 th %ile queue <i>(m)</i>	149	159	83	71	72	79	91	84
NB left	v/c	_	_	—	_	0.41	0.42	0.38	0.38
	Delay (s/veh)	_	_	_	_	27.6	29.5	40.8	36.1
	LOS	_	_	_	_	С	С	D	D
	95 th %ile queue (m)	_	_	_	_	27	28	38	37
SB left	v/c	0.73	0.76	0.65	0.58	0.56	0.57	0.51	0.37
	Delay (s/veh)	34.8	38.2	53.0	43.1	32.4	34.5	64.1	43.7
	LOS	С	D	D	D	С	С	E	D
	95 th %ile queue (m)	93	99	57	50	34	36	23	18

Table 12: Comparison o	f Intersection Operations	, Single vs. Dua	I Eastbound Left Turn Lanes

The dual left turn lanes result in a minor overall increase in delay during the PM peak hour when left turn volumes are lower and more easily accommodated in a single lane, and a minor overall decrease in delay during the pre-game peak hour when left turn volumes are higher and can be processed more efficiently in two lanes.

During the pre-game hour:

 The dual left turn lanes result in increased capacity and shorter queues on the eastbound left turn movements, but also slightly longer delays because the left turn phase would "gap out" sooner than a single left turn lane, and because the left turn phase would need to be fully protected and therefore left-turning vehicles would not be able to make use of gaps in oncoming traffic during the westbound phase.

The dual left turn lanes result in increased capacity and shorter delays on other intersection movements. With the left turn phase "gapping out" earlier, other movements would receive a green signal sooner and would experience shorter delays.

During the PM peak hour (and other times when eastbound left turn demand is lower), the same capacity benefits are not experienced on the left turn movement, and the increase in delay (due to fully protected left turn phasing) would be more substantial.

There are three other considerations that were not reflected in the scope of analyses:

- AM peak hour business park traffic;
- Potential south leg at Street "A"; and
- Variability in pre-game arrival flows.

The analyses focused on peak conditions for the site overall. The AM peak hour may generate less traffic due to lower activity levels at the casino and arena, but would still experience high eastbound left turn demand once the business park is fully built out. Using the same parameters and assumptions as the PM peak hour analyses, it is estimated that the business park on its own could generate approximately 650 eastbound left turns at Street "A"; this volume is lower than the pre-game demand, but this would be offset by higher opposing westbound traffic. This indicates that the need to accommodate high volumes of left-turning traffic would eventually become a daily occurrence, not limited to infrequent events at the arena.

Also in the longer term, there is the potential to construct a south leg at the Kingsway and Street "A" to serve future residential development. If this link materializes, it would result in increased competition for green time at the intersection, particularly during the AM peak hour (i.e., outbound residential traffic on the northbound left turn would be competing for capacity with inbound business park traffic on the eastbound left turn and general commuting traffic on the westbound approach).

Consideration was given to the potential effect of variability in arrivals on the eastbound left turn before a game or event. The analyses assumed relatively even distribution of left turn demand throughout the peak hour. It is possible that the arrival rate may be more variable within the hour (e.g., increasing closer to the start of the event).

- In the single left turn lane scenario, the left turn capacity at Street "A" is fixed at 220 vehicles during the peak 15-minute interval.
- In the dual left turn lane scenario, the left turn capacity shown in *Table 12* is based on the left turn phase "gapping out" where possible, and the actual left turn capacity could be higher (up to 280 vehicles during the peak 15-minute interval) if the left turn phase consistently reaches its maximum length.

In summary, the dual left turn lane configuration is better able to process site traffic, and with less impact on other background traffic, during high-volume periods when the additional left turn capacity is needed, although it would require a fully protected left turn phase that would result in higher delays for the left turn movement at other times when the lower volumes do not warrant the additional capacity of a dual left turn lane.

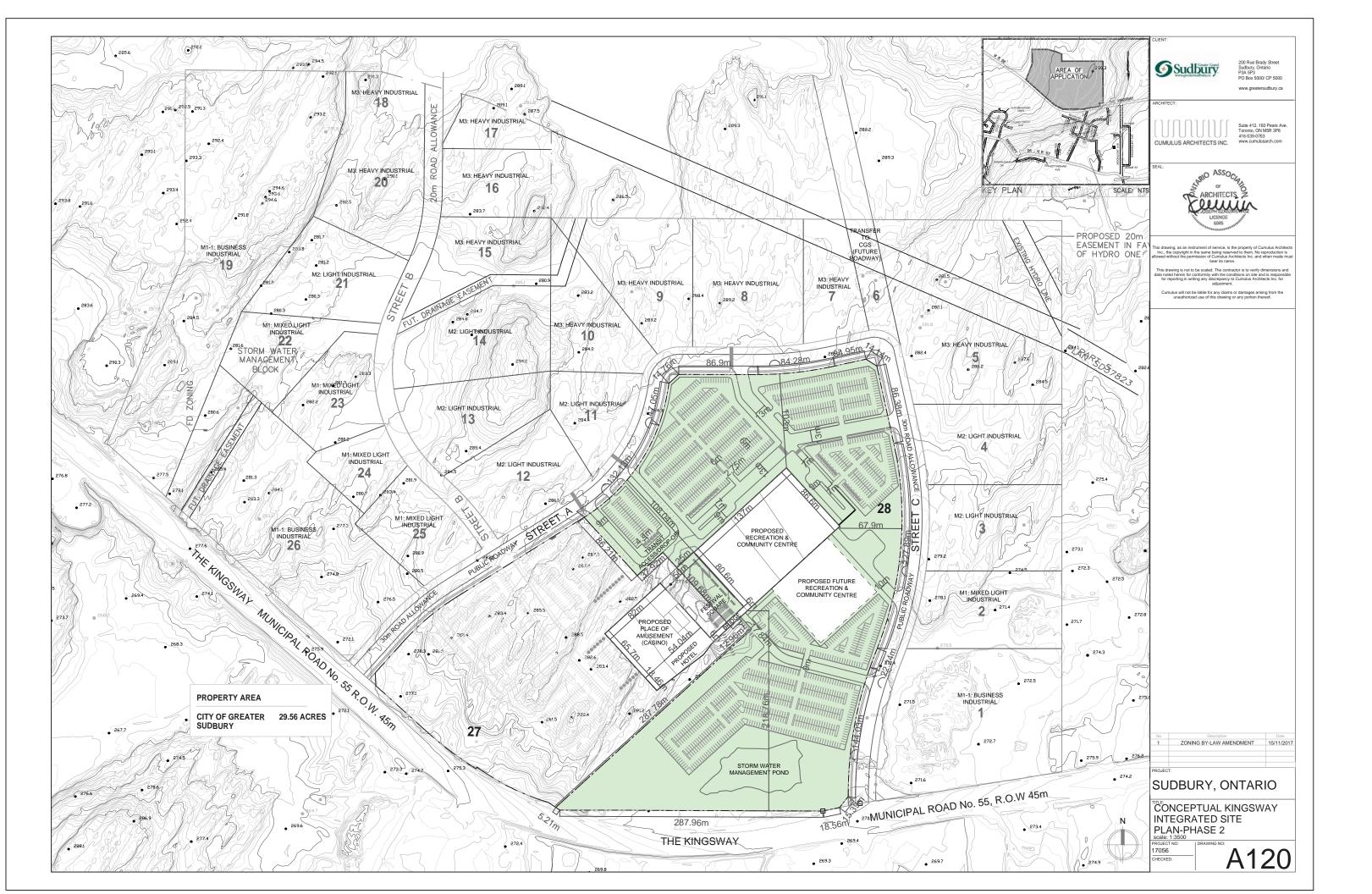
In the short term, the high-volume periods will be relatively infrequent (associated with events at the arena, particularly the subset of events with higher attendance). In the longer term, development in the business park would be expected to also generate high left turn volumes on a regular basis, and would potentially also be competing for intersection capacity with residential traffic entering from the south. As such, a potential form of mitigation could be to widen the Kingsway to accommodate a future dual left turn lane, but operate the intersection with a single left turn lane. This would allow for the following:

- It would avoid having to widen the Kingsway twice at Street "A" (once to construct a single left turn lane; a second time to construct the second left turn lane, when required). The conversion could be achieved relatively quickly and at lower cost.
- In the interim, the "hatched-out", unused second left turn lane could be used as a queue jump lane by Sudbury Transit on event nights, to allow buses to access the site more quickly and give them a travel time advantage over general traffic.

The need for the dual left turn lanes is expected to be greatest at Street "A". The projected peak hour left turn volumes are highest at Street "A", and this would also likely be the case during the AM peak hour since a greater proportion of the business park is accessed via Street "A" than via Street "C". Conversely, there are more potential property constraints at Street "C" due to existing development on the south side of the Kingsway. Recognizing that there are benefits and drawbacks to both single and dual left turn lane configurations, a possible solution would be to provide eastbound dual left turn lanes at Street "A", but to continue to serve eastbound left turns at Street "C" in a single lane.

2.6 Proposed On-Site Bus Loop

The site plan includes a pick-up and drop-off loop in front of Festival Square, between the main entrances to the casino and the arena. It will operate with one-way traffic traveling in a counterclockwise direction (i.e., traffic will enter at the south leg of the loop, and will exit at the north leg of the loop). The pick-up and drop-off loop will be reserved for use by buses before and after events at the arena.


Traffic signals are proposed at the exit from the bus loop to enable buses to enter Street "A." The traffic signals will also facilitate pedestrian crossings to the overflow parking (as discussed in *Section 2.3*). The traffic signals will be configured so that a bus receives a green signal as soon as practicable after arriving at Street "A," providing a break in traffic on Street "A" to allow the bus to exit the loop. Once the bus has turned onto Street "A," the time for the bus to reach the Kingsway is estimated at approximately 3 to 4 minutes (or less, depending on the length of the southbound queue on Street "A" was determined. The anticipated operations and timing parameters of this signal will be explored in more detail as part of the site plan application stage.

Pedestrian activity across the bus loop roadway is expected to be low. Pedestrians traveling to the overflow parking area north of Street "A" will use the walkway along the east side of the bus loop, leading to the proposed signalized crossing, and will not need to cross the bus loop roadway. Pedestrian crossing demand to the west side of the bus loop will be low, because the parking area to the west is planned to be reserved for casino visitors. There will be some pedestrian crossing demand to the small parking lot within the interior of the bus loop (approximately 75 spaces). Pedestrian crossing

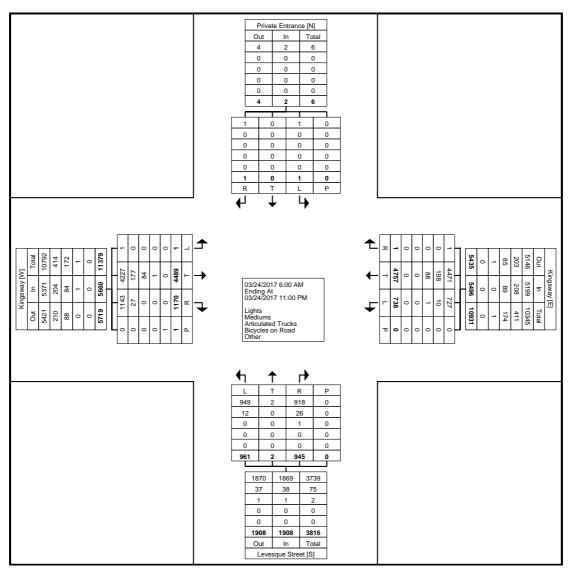
Attachment 1: Proposed Site Plan

DILLON CONSULTING LIMITED

www.dillon.ca

Estelle Street Development Tulloch Engineering Inc. JDE-20112 Date: March 5th, 2021

Appendix C – Traffic Count Data

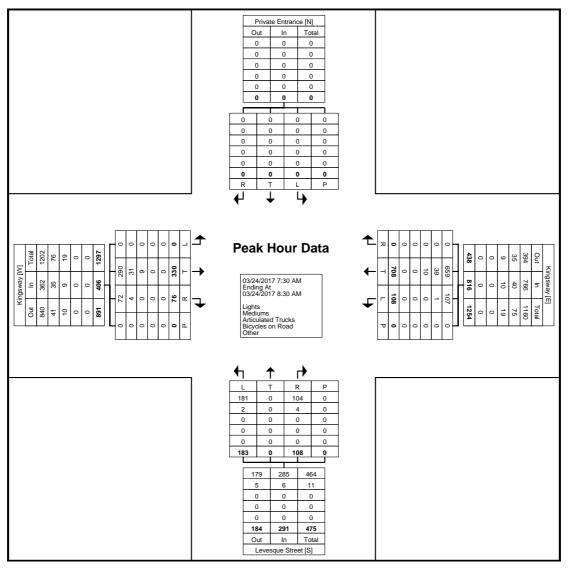

Count Name: Kingsway @ Levesque Site Code: 00577103 Start Date: 03/24/2017 Page No: 1

Turning Movement Data

							Т	urnii	ng M	lovei	ment	t Dai	ta								
		Priv	ate Entra	ance			I	Kingswa	y –			Lev	vesque St	reet			I	Kingswa	у		
		S	outhbou	nd			V	Vestbour	nd			N	lorthbour	nd			E	Eastbour	nd		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
6:00 AM	0	0	0	0	0	0	33	15	0	48	10	0	12	0	22	9	20	0	0	29	99
6:15 AM	0	0	0	0	0	0	41	19	0	60	10	0	20	0	30	11	27	0	0	38	128
6:30 AM	0	0	0	0	0	0	98	27	0	125	20	0	29	0	49	13	38	0	0	51	225
6:45 AM	0	0	0	0	0	0	130	28	0	158	24	0	34	0	58	12	42	0	0	54	270
Hourly Total	0	0	0	0	0	0	302	89	0	391	64	0	95	0	159	45	127	0	0	172	722
7:00 AM	0	0	0	0	0	0	75	24	0	99	27	0	22	0	49	11	55	0	0	66	214
7:15 AM	0	0	0	0	0	0	121	32	0	153	25	0	30	0	55	10	69	0	0	79	287
7:30 AM	0	0	0	0	0	0	183	33	0	216	29	0	53	0	82	17	86	0	0	103	401
7:45 AM	0	0	0	0	0	0	199	31	0	230	32	0	42	0	74	20	94	0	0	114	418
Hourly Total	0	0	0	0	0	0	578	120	0	698	113	0	147	0	260	58	304	0	0	362	1320
8:00 AM	0	0	0	0	0	0	192	30	0	222	16	0	40	0	56	21	78	0	0	99	377
8:15 AM	0	0	0	0	0	0	134	14	0	148	31	0	48	0	79	18	72	0	0	90	317
8:30 AM	0	0	0	0	0	0	144	28	0	172	22	2	31	0	55	18	83	0	0	101	328
8:45 AM	0	0	0	0	0	0	140	33	0	173	30	0	39	0	69	26	83	0	0	109	351
Hourly Total	0	0	0	0	0	0	610	105	0	715	99	2	158	0	259	83	316	0	0	399	1373
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11:00 AM	0	0	0	0	0	0	107	19	0	126	23	0	17	0	40	30	98	0	0	128	294
11:15 AM	0	0	0	0	0	0	114	18	0	132	21	0	18	0	39	30	105	0	1	135	306
11:30 AM	0	0	0	0	0	0	109		0	126	38	0	29	0	67	30	113	0	0	143	336
11:45 AM	0	0	1	0	1	0	141 471	6 60	0		30 112	0	21 85	0	51 197	40 130	105 421	0	0	145 551	344 1280
Hourly Total 12:00 PM	0	0	0	0	0	0	138	21	0	159	25	0	20	0	45	38	112	0	0	150	354
12:15 PM	0	0	0	0	0	0	129	21	0	150	17	0	25	0	43	24	112	0	0	143	335
12:30 PM	0	0	0	0	0	0	129	19	0	145	25	0	20	0	45	32	105	0	0	143	327
12:45 PM	0	0	0	0	0	0	112	22	0	134	23	0	25	0	48	28	117	0	0	145	327
Hourly Total	0	0	0	0	0	0	505	83	0	588	90	0	90	0	180	122	453	0	0	575	1343
*** BREAK ***	-	-	-	-	-	-	-		-		-	-		-	-	-		-	-	-	-
4:00 PM	0	0	0	0	0	0	150	21	0	171	30	0	19	0	49	40	179	0	0	219	439
4:15 PM	0	0	0	0	0	0	146	17	0	163	25	0	16	0	41	34	188	0	0	222	426
4:30 PM	0	0	0	0	0	0	138	22	0	160	29	0	20	0	49	38	199	0	0	237	446
4:45 PM	0	0	0	0	0	0	177	18	0	195	27	0	17	0	44	47	215	1	0	263	502
Hourly Total	0	0	0	0	0	0	611	78	0	689	111	0	72	0	183	159	781	1	0	941	1813
5:00 PM	0	0	0	0	0	0	151	19	0	170	28	0	19	0	47	44	216	0	0	260	477
5:15 PM	1	0	0	0	1	1	149	18	0	168	33	0	19	0	52	60	187	0	0	247	468
5:30 PM	0	0	0	0	0	0	163	15	0	178	34	0	16	0	50	37	159	0	0	196	424
5:45 PM	0	0	0	0	0	0	113	13	0	126	22	0	17	0	39	33	133	0	0	166	331
Hourly Total	1	0	0	0	1	1	576	65	0	642	117	0	71	0	188	174	695	0	0	869	1700
6:00 PM	0	0	0	0	0	0	95	13	0	108	21	0	22	0	43	18	110	0	0	128	279
6:15 PM	0	0	0	0	0	0	96	14	0	110	17	0	20	0	37	24	122	0	0	146	293
6:30 PM	0	0	0	0	0	0	95	19	0	114	20	0	18	0	38	24	125	0	0	149	301
6:45 PM	0	0	0	0	0	0	87	5	0	92	14	0	16	0	30	29	74	0	0	103	225
Hourly Total	0	0	0	0	0	0	373	51	0	424	72	0	76	0	148	95	431	0	0	526	1098
7:00 PM	0	0	0	0	0	0	78	10	0	88	13	0	16	0	29	31	104	0	0	135	252
7:15 PM	0	0	0	0	0	0	75	12	0	87	13	0	17	0	30	19	63	0	0	82	199
7:30 PM	0	0	0	0	0	0	82	9	0	91	11	0	11	0	22	20	77	0	0	97	210
7:45 PM	0	0	0	0	0	0	55	6	0	61	20	0	14	0	34	27	70	0	0	97	192
Hourly Total	0	0	0	0	0	0	290	37	0	327	57	0	58	0	115	97	314	0	0	411	853
8:00 PM	0	0	0	0	0	0	43	5	0	48	15	0	19	0	34	27	81	0	0	108	190
8:15 PM	0	0	0	0	0	0	43	5	0	48	17	0	12	0	29	18	67	0	0	85	162
8:30 PM	0	0	0	0	0	0	52	3	. 0	55	7	0	8	0	15	21	78	0	0	99	169
8:45 PM	0	0	0	0	0	0	53	4	0	57	13	0	12	0	25	25	60	0	0	85	167
Hourly Total	0	0	0	0	0	0	191	<u> </u>	0	208	52 12	0	51	0	103	91 22	286	0	0	377	688
9:00 PM			0		-	0	46	5	0	51			6	0	18		57 67			79	148
9:15 PM	0	0	0	0	0		37	3	0	40	10	0	7	0	24	12	67	0	0		143
9:30 PM 9:45 PM	0	0	0	0	0	0	30 31	3 5	0	33 36	5 9	0	7 6	0	12 15	14 15	43 52	0	0	57 67	102 118
9:45 Pivi Hourly Total	0	0	0	0	0	0	144		0	160	36	0	33	0	69	63	219	0	0	282	511
10:00 PM	0	0	0	0	0	0	37	6	0	43	- 30 6	0	6	0	12	21	40	0	0	61	116
10:15 PM	0	0	0	0	0	0	26	4	0	30	5	0	12	0	17	11	38	0	0	49	96
10:30 PM	0	0	0	0	0	0	30	4	0	34	7	0	3	0	10	13	31	0	0	49	88
10.001 10			5				00	. 7							10	10		. 0			

10:45 PM	0	0	0	0	0	0	13	3	0	16	4	0	4	0	8	8	33	0	0	41	65
Hourly Total	0	0	0	0	0	0	106	17	0	123	22	0	25	0	47	53	142	0	0	195	365
Grand Total	1	0	1	0	2	1	4757	738	0	5496	945	2	961	0	1908	1170	4489	1	1	5660	13066
Approach %	50.0	0.0	50.0	-	-	0.0	86.6	13.4	-	-	49.5	0.1	50.4	-	-	20.7	79.3	0.0	-	-	-
Total %	0.0	0.0	0.0	-	0.0	0.0	36.4	5.6	-	42.1	7.2	0.0	7.4	-	14.6	9.0	34.4	0.0	-	43.3	-
Lights	1	0	1	-	2	1	4471	727	-	5199	918	2	949	-	1869	1143	4227	1	-	5371	12441
% Lights	100.0	-	100.0	-	100.0	100.0	94.0	98.5	-	94.6	97.1	100.0	98.8	-	98.0	97.7	94.2	100.0	-	94.9	95.2
Mediums	0	0	0	-	0	0	198	10	-	208	26	0	12	-	38	27	177	0	-	204	450
% Mediums	0.0	-	0.0	-	0.0	0.0	4.2	1.4	-	3.8	2.8	0.0	1.2	-	2.0	2.3	3.9	0.0	-	3.6	3.4
Articulated Trucks	0	0	0	-	0	0	88	1	-	89	1	0	0	-	1	0	84	0	-	84	174
% Articulated Trucks	0.0	-	0.0	-	0.0	0.0	1.8	0.1	-	1.6	0.1	0.0	0.0	-	0.1	0.0	1.9	0.0	-	1.5	1.3
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0	1	0	-	1	1
% Bicycles on Road	0.0	-	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-	-	-	1	-	-
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100.0	-	-

Turning Movement Data Plot

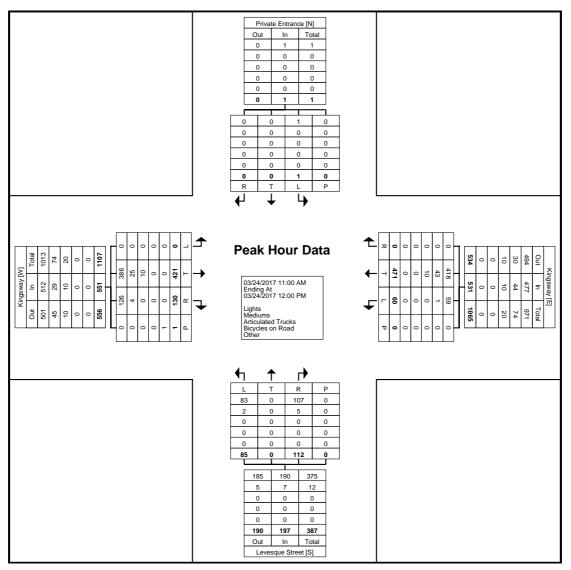


Count Name: Kingsway @ Levesque Site Code: 00577103 Start Date: 03/24/2017 Page No: 4

Turning Movement Peak Hour Data (7:30 AM)

		Priva	te Entra	000																	
				nce			ŀ	Kingsway	/			Leve	esque St	reet			1	Kingsway	/		
		So	uthboun	d			N	/estboun	d			N	orthbour	d			E	astboun	d		
Start Time Rig	ight T	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
7:30 AM 0	0	0	0	0	0	0	183	33	0	216	29	0	53	0	82	17	86	0	0	103	401
7:45 AM 0	0	0	0	0	0	0	199	31	0	230	32	0	42	0	74	20	94	0	0	114	418
8:00 AM 0	0	0	0	0	0	0	192	30	0	222	16	0	40	0	56	21	78	0	0	99	377
8:15 AM 0	0	0	0	0	0	0	134	14	0	148	31	0	48	0	79	18	72	0	0	90	317
Total 0	0	0	0	0	0	0	708	108	0	816	108	0	183	0	291	76	330	0	0	406	1513
Approach % 0.).0 (0.0	0.0	-	-	0.0	86.8	13.2	-	-	37.1	0.0	62.9	-	-	18.7	81.3	0.0	-	-	-
Total % 0.).0 (0.0	0.0	-	0.0	0.0	46.8	7.1	-	53.9	7.1	0.0	12.1	-	19.2	5.0	21.8	0.0	-	26.8	-
PHF 0.0	000 0.	.000	0.000	-	0.000	0.000	0.889	0.818	-	0.887	0.844	0.000	0.863	-	0.887	0.905	0.878	0.000	-	0.890	0.905
Lights 0	0	0	0	-	0	0	659	107	-	766	104	0	181	-	285	72	290	0	-	362	1413
% Lights -	-	-	-	-	-	-	93.1	99.1	-	93.9	96.3	-	98.9	-	97.9	94.7	87.9	-	-	89.2	93.4
Mediums 0	0	0	0	-	0	0	39	1	-	40	4	0	2	-	6	4	31	0	-	35	81
% Mediums -	-	-	-	-	-	-	5.5	0.9	-	4.9	3.7	-	1.1	-	2.1	5.3	9.4	-	-	8.6	5.4
Articulated Trucks	0	0	0	-	0	0	10	0	-	10	0	0	0	-	0	0	9	0	-	9	19
% Articulated Trucks	-	-	-	-	-	-	1.4	0.0	-	1.2	0.0	-	0.0	-	0.0	0.0	2.7	-	-	2.2	1.3
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
% Bicycles on Road	-	-	-	-	-	-	0.0	0.0	-	0.0	0.0	-	0.0	-	0.0	0.0	0.0	-	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pedestrians -	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Pedestrians -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Turning Movement Peak Hour Data Plot (7:30 AM)

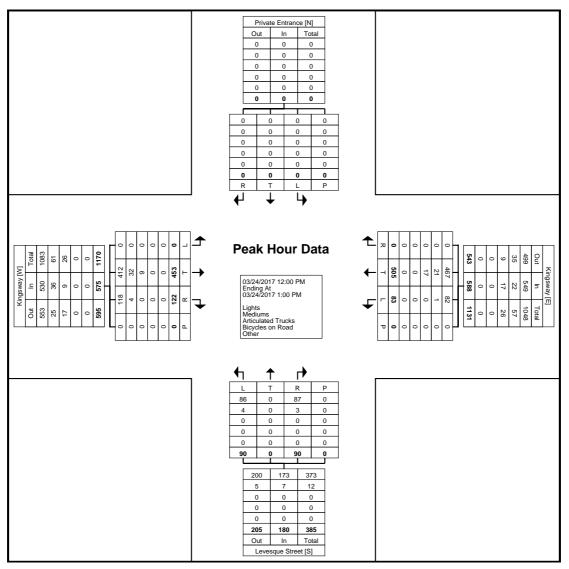


Count Name: Kingsway @ Levesque Site Code: 00577103 Start Date: 03/24/2017 Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

					Turn	ing i	NOV	eme	ni Pe	eak r	JOUL	Dat	a (1	1:00	AIVI)						
		Priv	ate Entra	ance			H	Kingsway	/			Lev	esque St	reet			I	Kingsway	/		
		S	outhbour	nd			V	/estboun	d			N	orthbour	nd			E	Eastboun	d		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
11:00 AM	0	0	0	0	0	0	107	19	0	126	23	0	17	0	40	30	98	0	0	128	294
11:15 AM	0	0	0	0	0	0	114	18	0	132	21	0	18	0	39	30	105	0	1	135	306
11:30 AM	0	0	0	0	0	0	109	17	0	126	38	0	29	0	67	30	113	0	0	143	336
11:45 AM	0	0	1	0	1	0	141	6	0	147	30	0	21	0	51	40	105	0	0	145	344
Total	0	0	1	0	1	0	471	60	0	531	112	0	85	0	197	130	421	0	1	551	1280
Approach %	0.0	0.0	100.0	-	-	0.0	88.7	11.3	-	-	56.9	0.0	43.1	-	-	23.6	76.4	0.0	-	-	-
Total %	0.0	0.0	0.1	-	0.1	0.0	36.8	4.7	-	41.5	8.8	0.0	6.6	-	15.4	10.2	32.9	0.0	-	43.0	-
PHF	0.000	0.000	0.250	-	0.250	0.000	0.835	0.789	-	0.903	0.737	0.000	0.733	-	0.735	0.813	0.931	0.000	-	0.950	0.930
Lights	0	0	1	-	1	0	418	59	-	477	107	0	83	-	190	126	386	0	-	512	1180
% Lights	-	-	100.0	-	100.0	-	88.7	98.3	-	89.8	95.5	-	97.6	-	96.4	96.9	91.7	-	-	92.9	92.2
Mediums	0	0	0	-	0	0	43	1	-	44	5	0	2	-	7	4	25	0	-	29	80
% Mediums	-	-	0.0	-	0.0	-	9.1	1.7	-	8.3	4.5	-	2.4	-	3.6	3.1	5.9	-	-	5.3	6.3
Articulated Trucks	0	0	0	-	0	0	10	0	-	10	0	0	0	-	0	0	10	0	-	10	20
% Articulated Trucks	-	-	0.0	-	0.0	-	2.1	0.0	-	1.9	0.0	-	0.0	-	0.0	0.0	2.4	-	-	1.8	1.6
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
% Bicycles on Road	-	-	0.0	-	0.0	-	0.0	0.0	-	0.0	0.0	-	0.0	-	0.0	0.0	0.0	-	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-	-	-	1	-	-
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100.0	-	-

Turning Movement Peak Hour Data Plot (11:00 AM)

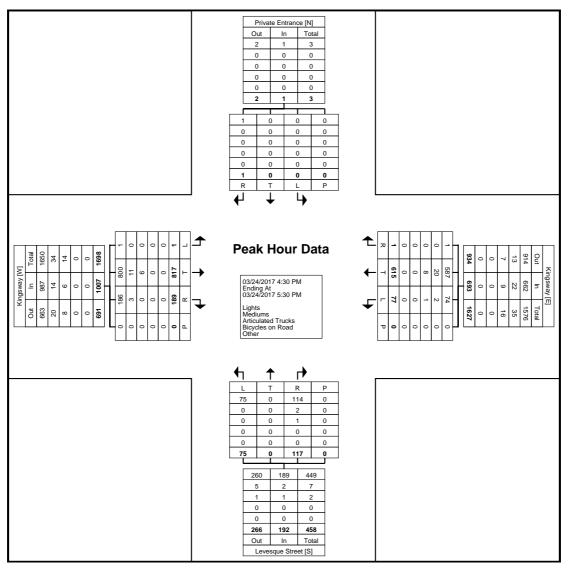


Count Name: Kingsway @ Levesque Site Code: 00577103 Start Date: 03/24/2017 Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time Private Entrance Kingsway Leves U Uter Vertex U Leves U Northbound Kingsway Eastes Unit 12:00 PM 0 <						Turn	iing i	VIOV	eme	nt Pe	еак г	Hour	Dat	a (12	2:00	PIVI)						
Start Time Right Thru Left Peds App. Total Right Thru Left Peds Solut Solut			Priv	ate Entra	ance			H	Kingsway	y			Lev	esque St	reet			1	Kingsway	/		
Right Thru Left Peds Profial Right Thru Left Peds			S	outhbour	nd			V	Vestbour	nd			N	orthbour	nd			E	astboun	d		
12:15 PM 0 0 0 0 12:2 21 0 150 17 0 25 0 42 24 119 0 0 143 335 12:30 PM 0 0 0 0 0 0 0 0 12:6 19 0 145 25 0 20 0 45 32 105 0 0 137 327 12:45 PM 0 0 0 0 0 0 0 0 112 22 0 134 23 0 25 0 48 28 117 0 0 145 327 Total 0 0 0 0.505 83 0 588 90 0 90 0 188 133.7 0.0 - - 113 337 0.0 - 21.2 78.8 0.0 - - 19.9 133.7 0.0 - 21.2 78.8 0.0 - - 113.8 412 0 0 0	Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	
12:30 PM 0 0 0 0 126 19 0 145 25 0 20 0 45 32 105 0 0 137 327 12:45 PM 0 0 0 0 0 112 22 0 134 23 0 25 0 48 28 117 0 0 145 327 Total 0 0 0 0 0 505 83 0 588 90 0 90 0 180 122 453 0 0 575 1343 Approach % 0.0 0.0 0.0 0.0 37.6 6.2 - 43.8 6.7 0.0 6.93 0.0 - - - - - - - - 133.7 0.0 - 42.8 - - - - - - - - 21.2 78.8 0.0 - 0.938 0.803 0.952 0.000 - 0.958 0.948 - <t< td=""><td>12:00 PM</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>138</td><td>21</td><td>0</td><td>159</td><td>25</td><td>0</td><td>20</td><td>0</td><td>45</td><td>38</td><td>112</td><td>0</td><td>0</td><td>150</td><td>354</td></t<>	12:00 PM	0	0	0	0	0	0	138	21	0	159	25	0	20	0	45	38	112	0	0	150	354
12:45 PM 0 0 0 0 112 22 0 134 23 0 25 0 48 28 117 0 0 145 327 Total 0 0 0 0 0 555 83 0 588 90 0 90 0 180 122 453 0 0 575 1343 Approach % 0.0 0.0 0.0 0.0 0.0 85.9 14.1 - 50.0 0.0 550.0 - 21.2 78.8 0.0 - - - - - 50.0 0.0 65.0 - 21.2 78.8 0.0 - - - - - - - - - - - - - - - 21.2 78.8 0.0 0.0 - - - - - - - 21.2 78.8 0.00 - 0.0 21.2 21.2 21.2 21.2 0.33 0.00 - 0.38 <	12:15 PM	0	0	0	0	0	0	129	21	0	150	17	0	25	0	42	24	119	0	0	143	335
Total 0 0 0 0 555 83 0 588 90 0 90 0 180 122 453 0 575 1343 Approach % 0.0 0.0 0.0 0.0 0.0 505 83 0 588 90 0 90 0 180 122 453 0 0 575 1343 Approach % 0.0 0.0 0.0 37.6 6.2 43.8 6.7 0.0 6.7 13.4 9.1 33.7 0.0 42.8 - PHF 0.000 0.000 - 0 467 82 549 87 0 86 173 118 412 0 - 530 1252 % Lights - - - 92.5 98.8 93.4 96.7 95.6 96.1 96.7 90.9 - 92.2 93.2 % Mediums - - -	12:30 PM	0	0	0	0	0	0	126	19	0	145	25	0	20	0	45	32	105	0	0	137	327
Approach % 0.0 0.0 0.0 - 0.0 85.9 14.1 - 50.0 0.0 50.0 - 21.2 78.8 0.0 -	12:45 PM	0	0	0	0	0	0	112	22	0	134	23	0	25	0	48	28	117	0	0	145	327
Total % 0.0 0.0 0.0 37.6 6.2 - 43.8 6.7 0.0 6.7 - 13.4 9.1 33.7 0.0 - 42.8 - PHF 0.000 0.000 - 0.000 0.915 0.943 - 0.925 0.900 0.900 - 0.938 0.803 0.952 0.000 - 0.958 0.948 Lights 0 0 0 - - - - - - 530 1252 % Lights - - - - - - 92.5 98.8 - 93.4 96.7 - 96.1 96.7 90.9 - - 92.2 93.2 Mediums 0 0 0 - 0 0 11 - 22 3 0 4 - 7 4 32 0 - 92.2 93.2 Mediums - <td< td=""><td>Total</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>505</td><td>83</td><td>0</td><td>588</td><td>90</td><td>0</td><td>90</td><td>0</td><td>180</td><td>122</td><td>453</td><td>0</td><td>0</td><td>575</td><td>1343</td></td<>	Total	0	0	0	0	0	0	505	83	0	588	90	0	90	0	180	122	453	0	0	575	1343
PHF 0.000 0.000 0.000 0.915 0.943 - 0.925 0.900 0.900 - 0.938 0.803 0.952 0.000 - 0.958 0.948 Lights 0 0 0 - 0 0 467 82 - 549 87 0 86 - 173 118 412 0 - 530 1252 % Lights - - - - 92.5 98.8 93.4 96.7 - 95.6 - 96.1 96.7 90.9 - 92.2 93.2 Mediums 0 0 0 - 4.2 1.2 - 3.7 3.3 - 4.4 - 3.9 3.3 7.1 - 6.3 4.8 Articulated 0 0 0 17 0 - 0.0 0.0 2.0 - 1.6 1.9 Bicycles on Road -	Approach %	0.0	0.0	0.0	-	-	0.0	85.9	14.1	-	-	50.0	0.0	50.0	-	-	21.2	78.8	0.0	-	-	-
Lights 0 0 0 - 0 0 467 82 - 549 87 0 86 - 173 118 412 0 - 530 1252 % Lights - - - - 92.5 98.8 - 93.4 96.7 - 95.6 - 96.1 96.7 90.9 - - 92.2 93.2 Mediums 0 0 0 - 0 21 1 - 22 3 0 4 - 7 4 32 0 - 36 65 % Mediums - - - - 4.2 1.2 - 3.7 3.3 - 4.4 - 3.9 3.3 7.1 - - 6.3 4.8 Articulated Trucks - - - 17 0 0 0 0 9 0 - 9 26 <td>Total %</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>-</td> <td>0.0</td> <td>0.0</td> <td>37.6</td> <td>6.2</td> <td>-</td> <td>43.8</td> <td>6.7</td> <td>0.0</td> <td>6.7</td> <td>-</td> <td>13.4</td> <td>9.1</td> <td>33.7</td> <td>0.0</td> <td>-</td> <td>42.8</td> <td>-</td>	Total %	0.0	0.0	0.0	-	0.0	0.0	37.6	6.2	-	43.8	6.7	0.0	6.7	-	13.4	9.1	33.7	0.0	-	42.8	-
% Lights - - - 92.5 98.8 - 93.4 96.7 - 95.6 - 96.1 96.7 90.9 - - 92.2 93.2 Mediums 0 0 0 - 0 21 1 - 22 3 0 4 - 7 4 32 0 - 36 65 % Mediums - - - - 4.2 1.2 - 3.7 3.3 - 4.4 - 3.9 3.3 7.1 - 6.3 4.8 Articulated Trucks 0 0 0 - - 1.7 0 0 - 0 0 9 0 - 9 26 % Articulated Trucks - - - - 3.4 0.0 - 2.9 0.0 - 0.0 0.0 2.0 - 1.6 1.9 Bicycles on Road - - - 0.0 0.0 - 0.0 0.0 - 0.0	PHF	0.000	0.000	0.000	-	0.000	0.000	0.915	0.943	-	0.925	0.900	0.000	0.900	-	0.938	0.803	0.952	0.000	-	0.958	0.948
Mediums 0 0 0 21 1 - 22 3 0 4 - 7 4 32 0 - 36 65 % Mediums - - - - 4.2 1.2 - 3.7 3.3 - 4.4 - 3.9 3.3 7.1 - - 6.3 4.8 Articulated Trucks 0 0 0 - 0 0 17 0 - 17 0 0 0 9 0 - 9 26 % Articulated Trucks - - - - 3.4 0.0 - 2.9 0.0 - 0.0 0.0 2.0 - 1.6 1.9 Bicycles on Road - - - - 0.0 0.0 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Lights	0	0	0	-	0	0	467	82	-	549	87	0	86	-	173	118	412	0	-	530	1252
% Mediums - - - 4.2 1.2 - 3.7 3.3 - 4.4 - 3.9 3.3 7.1 - - 6.3 4.8 Articulated Trucks 0 0 0 - 0 0 17 0 - 17 0 0 0 - 9 26 % Articulated Trucks - - - - - 17 0 0 - 0 9 0 - 9 26 % Articulated Trucks - - - - 3.4 0.0 - 2.9 0.0 - 0.0 0.0 2.0 - - 1.6 1.9 Bicycles on Road 0 <td< td=""><td>% Lights</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>92.5</td><td>98.8</td><td>-</td><td>93.4</td><td>96.7</td><td>-</td><td>95.6</td><td>-</td><td>96.1</td><td>96.7</td><td>90.9</td><td>-</td><td>-</td><td>92.2</td><td>93.2</td></td<>	% Lights	-	-	-	-	-	-	92.5	98.8	-	93.4	96.7	-	95.6	-	96.1	96.7	90.9	-	-	92.2	93.2
Articulated Trucks 0 0 0 - 0 17 0 - 17 0 0 0 - 9 26 % Articulated Trucks - - - - - - 3.4 0.0 - 2.9 0.0 - 0.0 0.0 2.0 - - 1.6 1.9 Bicycles on Road 0 0 0 0 0 0 0 0 0 0 0.0 2.0 - 1.6 1.9 Bicycles on Road 0 0 0 0 0 0 0 0 0 0 0 0.0 2.0 - 1.6 1.9 Bicycles on Crosswalk - - - 0	Mediums	0	0	0	-	0	0	21	1	-	22	3	0	4	-	7	4	32	0	-	36	65
Trucks 0 0 0 17 0 - 17 0 0 0 - 0 0 9 0 - 9 26 % Articulated Trucks - - - - - 3.4 0.0 - 2.9 0.0 - 0.0 0.0 2.0 - - 1.6 1.9 Bicycles on Road - - - 0	% Mediums	-	-	-	-	-	-	4.2	1.2	-	3.7	3.3	-	4.4	-	3.9	3.3	7.1	-	-	6.3	4.8
Trucks - - - - - - - 2.9 0.0 - 0.0 0.0 2.0 - - 1.0 1.9 Bicycles on Road 0		0	0	0	-	0	0	17	0	-	17	0	0	0	-	0	0	9	0	-	9	26
Road 0		-	-	-	-	-	-	3.4	0.0	-	2.9	0.0	-	0.0	-	0.0	0.0	2.0	-	-	1.6	1.9
Road - - - - 0.0 0.0 - 0.0 - 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 0.0 - 0.0	Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
Crósswalk - - 0 - 0 - 0 - 1 - 0 - 1 0 - 1		-	-	-	-	-	-	0.0	0.0	-	0.0	0.0	-	0.0	-	0.0	0.0	0.0	-	-	0.0	0.0
Crosswalk -	Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
% Pedestrians	Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
	% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Turning Movement Peak Hour Data Plot (12:00 PM)



Count Name: Kingsway @ Levesque Site Code: 00577103 Start Date: 03/24/2017 Page No: 10

Turning Movement Peak Hour Data (4:30 PM)

					I Uri	ning	IVIOV	/eme	ent P	еак	HOU	r Da	ta (4	:30	PIVI)						
		Priv	ate Entra	ance			I	Kingsway	/			Lev	esque St	reet			1	Kingsway	/		
		S	outhbour	nd			v	Vestbour	d			N	orthbour	d			E	Eastboun	d		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
4:30 PM	0	0	0	0	0	0	138	22	0	160	29	0	20	0	49	38	199	0	0	237	446
4:45 PM	0	0	0	0	0	0	177	18	0	195	27	0	17	0	44	47	215	1	0	263	502
5:00 PM	0	0	0	0	0	0	151	19	0	170	28	0	19	0	47	44	216	0	0	260	477
5:15 PM	1	0	0	0	1	1	149	18	0	168	33	0	19	0	52	60	187	0	0	247	468
Total	1	0	0	0	1	1	615	77	0	693	117	0	75	0	192	189	817	1	0	1007	1893
Approach %	100.0	0.0	0.0	-	-	0.1	88.7	11.1	-	-	60.9	0.0	39.1	-	-	18.8	81.1	0.1	-	-	-
Total %	0.1	0.0	0.0	-	0.1	0.1	32.5	4.1	-	36.6	6.2	0.0	4.0	-	10.1	10.0	43.2	0.1	-	53.2	-
PHF	0.250	0.000	0.000	-	0.250	0.250	0.869	0.875	-	0.888	0.886	0.000	0.938	-	0.923	0.788	0.946	0.250	-	0.957	0.943
Lights	1	0	0	-	1	1	587	74	-	662	114	0	75	-	189	186	800	1	-	987	1839
% Lights	100.0	-	-	-	100.0	100.0	95.4	96.1	-	95.5	97.4	-	100.0	-	98.4	98.4	97.9	100.0	-	98.0	97.1
Mediums	0	0	0	-	0	0	20	2	-	22	2	0	0	-	2	3	11	0	-	14	38
% Mediums	0.0	-	-	-	0.0	0.0	3.3	2.6	-	3.2	1.7	-	0.0	-	1.0	1.6	1.3	0.0	-	1.4	2.0
Articulated Trucks	0	0	0	-	0	0	8	1	-	9	1	0	0	-	1	0	6	0	-	6	16
% Articulated Trucks	0.0	-	-	-	0.0	0.0	1.3	1.3	-	1.3	0.9	-	0.0	-	0.5	0.0	0.7	0.0	-	0.6	0.8
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
% Bicycles on Road	0.0	-	-	-	0.0	0.0	0.0	0.0	-	0.0	0.0	-	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

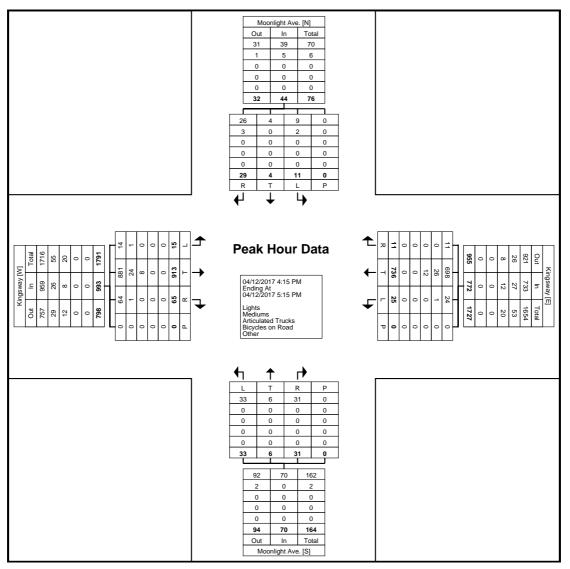
Turning Movement Peak Hour Data Plot (4:30 PM)

Turning Movement Data

								urni	ng M	lovei	ment	t Dat	a								
		Mc	onlight A	Ave.			I	Kingswa	у			Мо	onlight A	Ave.				Kingswa	у		
		S	outhbou	nd			V	Vestbour	nd			N	orthbou	nd			E	Eastbour	nd		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
3:00 PM	10	0	0	0	10	1	132	4	0	137	6	0	8	0	14	11	201	13	0	225	386
3:15 PM	12	0	0	0	12	3	120	0	0	123	6	0	8	0	14	12	202	9	0	223	372
3:30 PM	10	0	0	0	10	2	151	3	0	156	9	0	9	0	18	9	194	11	0	214	398
3:45 PM	11	0	0	0	11	3	173	7	0	183	4	0	10	0	14	15	198	3	0	216	424
Hourly Total	43	0	0	0	43	9	576	14	0	599	25	0	35	0	60	47	795	36	0	878	1580
4:00 PM	9	0	2	0	11	2	130	4	0	136	8	2	8	0	18	17	193	7	0	217	382
4:15 PM	7	0	4	0	11	2	157	6	0	165	11	1	6	0	18	13	232	5	0	250	444
4:30 PM	6	1	1	0	8	5	222	8	0	235	8	3	8	0	19	15	235	4	0	254	516
4:45 PM	12	2	5	0	19	4	176	5	0	185	6	2	8	0	16	15	213	3	0	231	451
Hourly Total	34	3	12	0	49	13	685	23	0	721	33	8	30	0	71	60	873	19	0	952	1793
5:00 PM	4	1	. 1	0	6	0	181	6	0	187	6	0	11	0	17	22	233	3	0	258	468
5:15 PM	5	0	0	0	5	2	176	7	0	185	3	0	6	0	9	20	191	3	0	214	413
5:30 PM	5	0	1	0	6	0	139	6	0	145	5	0	12	0	17	13	184	1	0	198	366
5:45 PM	2	0	0	0	2	0	135	0	0	135	2	0	13	0	15	16	178	0	0	194	346
Hourly Total	16	1	2	0	19	2	631	19	0	652	16	0	42	0	58	71	786	7	0	864	1593
6:00 PM *** BREAK ***	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:00 AM	0	0	0	0	0	0	67	0	0	67	0	0	3	0	3	0	41	0	0	41	111
6:15 AM	0	0	0	0	0	0	95	0	0	95	4	0	5	0	9	4	47	0	0	51	155
6:30 AM	0	0	0	0	0	0	146	0	0	146	6	0	11	0	17	8	58	1	0	67	230
6:45 AM	0	0	0	0	0	0	113	1	0	114	8	0	2	0	10	3	86	1	0	90	214
Hourly Total	0	0	0	0	0	0	421	1	0	422	18	0	21	0	39	15	232	2	0	249	710
7:00 AM	0	0	0	0	0	0	128	2	0	130	8	0	7	0	15	6	89	1	0	96	241
7:15 AM	0	0	0	0	0	2	173	1	0	176	7	0	13	0	20	3	81	2	0	86	282
7:30 AM	1	0	0	0	1	1	243	1	0	245	4	1	16	0	21	7	97	7	1	111	378
7:45 AM	0	0	0	0	0	2	266	2	0	270	7	1	20	0	28	7	122	8	0	137	435
Hourly Total	1	0	0	0	1	5	810	6	0	821	26	2	56	0	84	23	389	18	1	430	1336
8:00 AM	6	1	0	0	7	3	207	0	0	210	4	0	8	0	12	7	117	5	0	129	358
8:15 AM	6	0	3	0	9	4	166	0	0	170	1	3	9	0	13	10	113	9	0	132	324
8:30 AM	13	0	0	0	13	1	185	0	0	186	12	0	10	0	22	10	125	3	0	138	359
8:45 AM	7	1	2	0	10	3	195	0	0	198	6	0	12	0	18	5	126	5	0	136	362
Hourly Total	32	2	5	0	39	11	753	0	0	764	23	3	39	0	65	32	481	22	0	535	1403
9:00 AM	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0		0	0	1	0	0	0	0	0	1
11:00 AM	17	2	1	0	20	6	143	2	0	151	2	2	10	0	14	1	116	8	0	125	310
11:15 AM	9	0	2	0	11	2	115 148	1 2	0	118	2	2	4	0	8	12 9	127	16 12	0	155	292
11:30 AM 11:45 AM	15 15	1	1	0	17 17	5	140	3	0	152 148	4	2	8	0	12 14	10	143 146	13	0	164 169	345 348
Hourly Total	56	4	5	0	65	15	546	8	0	569	12	8	28	1	48	32	532	49	0	613	1295
12:00 PM	18	1	1	0	20	5	158	6	0	169	5	 1	7	0	13	14	164	13	0	191	393
12:15 PM	13	2	6	0	21	8	151	3	0	162	5	1	4	0	10	9	161	11	0	181	374
12:30 PM	16	0	3	0	19	1	167	4	0	172	6	3	11	0	20	7	142	11	0	160	371
12:45 PM	16	2	5	0	23	4	150	9	0	163	7	0	13	0	20	8	160	8	0	176	382
Hourly Total	63	5	15	0	83	18	626	22	0	666	23	5	35	0	63	38	627	43	0	708	1520
1:00 PM	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1
Grand Total	245	15	39	0	299	73	5049	93	0	5215	176	27	286	1	489	318	4715	196	1	5229	11232
Approach %	81.9	5.0	13.0	-	-	1.4	96.8	1.8	-	-	36.0	5.5	58.5	-	-	6.1	90.2	3.7	-	-	-
Total %	2.2	0.1	0.3	-	2.7	0.6	45.0	0.8	-	46.4	1.6	0.2	2.5	-	4.4	2.8	42.0	1.7	-	46.6	-
Lights	196	14	32	-	242	63	4754	89	-	4906	168	27	280	-	475	286	4414	149	-	4849	10472
% Lights	80.0	93.3	82.1	-	80.9	86.3	94.2	95.7	-	94.1	95.5	100.0	97.9	-	97.1	89.9	93.6	76.0	-	92.7	93.2
Mediums	46	1	7	-	54	10	202	4	-	216	6	0	6	-	12	31	192	47	-	270	552
% Mediums	18.8	6.7	17.9	-	18.1	13.7	4.0	4.3	-	4.1	3.4	0.0	2.1	-	2.5	9.7	4.1	24.0	-	5.2	4.9
Articulated Trucks	3	0	0	-	3	0	91	0	-	91	2	0	0	-	2	1	109	0	-	110	206
% Articulated Trucks	1.2	0.0	0.0	-	1.0	0.0	1.8	0.0	-	1.7	1.1	0.0	0.0	-	0.4	0.3	2.3	0.0	-	2.1	1.8
Bicycles on Road	0	0	0	-	0	0	2	0	-	2	0	0	0	-	0	0	0	0	-	0	2
% Bicycles on	0.0	0.0	0.0	_	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0
Road																1					

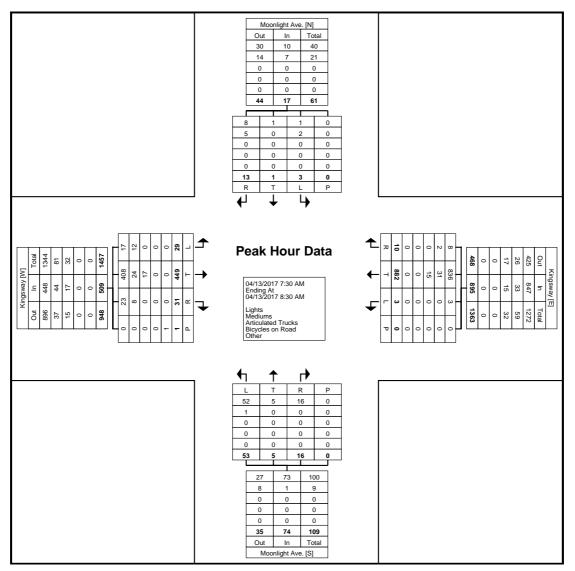
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Bicycles on Crosswalk	•	-	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	-	-	0.0	-	-
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	1	-	-	-	-	1	-	-
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	100.0	-	-	-	-	100.0	-	-

Count Name: Kingsway at Moonlight Ave. Site Code: 00579103 Start Date: 04/12/2017 Page No: 3


Turning Movement Data Plot

Turning Movement Peak Hour Data (4:15 PM)

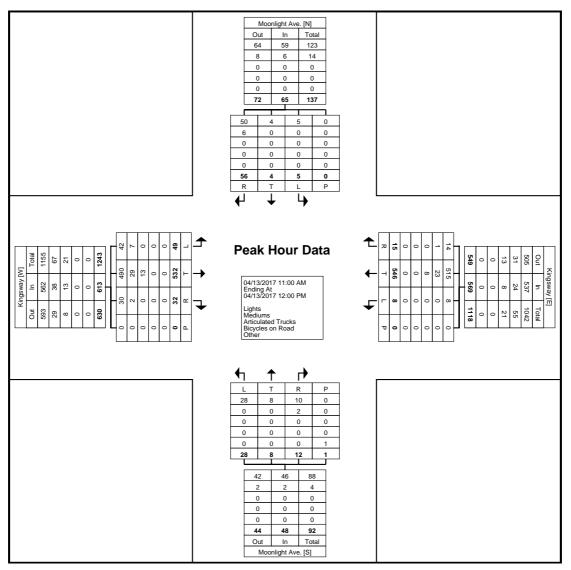
					Turi	ning	IVIOV	eme	ent P	eak	HOU	r Da	เล (4	.15	PIVI)						
	Moonlight Ave.						Kingsway Moonlight Ave. Kingsway														
	Southbound						Westbound						orthbour	nd							
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
4:15 PM	7	0	4	0	11	2	157	6	0	165	11	1	6	0	18	13	232	5	0	250	444
4:30 PM	6	1	1	0	8	5	222	8	0	235	8	3	8	0	19	15	235	4	0	254	516
4:45 PM	12	2	5	0	19	4	176	5	0	185	6	2	8	0	16	15	213	3	0	231	451
5:00 PM	4	1	1	0	6	0	181	6	0	187	6	0	11	0	17	22	233	3	0	258	468
Total	29	4	11	0	44	11	736	25	0	772	31	6	33	0	70	65	913	15	0	993	1879
Approach %	65.9	9.1	25.0	-	-	1.4	95.3	3.2	-	-	44.3	8.6	47.1	-	-	6.5	91.9	1.5	-	-	-
Total %	1.5	0.2	0.6	-	2.3	0.6	39.2	1.3	-	41.1	1.6	0.3	1.8	-	3.7	3.5	48.6	0.8	-	52.8	-
PHF	0.604	0.500	0.550	-	0.579	0.550	0.829	0.781	-	0.821	0.705	0.500	0.750	-	0.921	0.739	0.971	0.750	-	0.962	0.910
Lights	26	4	9	-	39	11	698	24	-	733	31	6	33	-	70	64	881	14	-	959	1801
% Lights	89.7	100.0	81.8	-	88.6	100.0	94.8	96.0	-	94.9	100.0	100.0	100.0	-	100.0	98.5	96.5	93.3	-	96.6	95.8
Mediums	3	0	2	-	5	0	26	1	-	27	0	0	0	-	0	1	24	1	-	26	58
% Mediums	10.3	0.0	18.2	-	11.4	0.0	3.5	4.0	-	3.5	0.0	0.0	0.0	-	0.0	1.5	2.6	6.7	-	2.6	3.1
Articulated Trucks	0	0	0	-	0	0	12	0	-	12	0	0	0	-	0	0	8	0	-	8	20
% Articulated Trucks	0.0	0.0	0.0	-	0.0	0.0	1.6	0.0	-	1.6	0.0	0.0	0.0	-	0.0	0.0	0.9	0.0	-	0.8	1.1
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	•						-			-	-	-					-				·


Turning Movement Peak Hour Data Plot (4:15 PM)

Turning Movement Peak Hour Data (7:30 AM)

					Tun	illig	IVIOV	CITIC	пг	ear	i iou	i Da	ιa (1	.507	<u>, ivi</u>						
	Moonlight Ave.						Kingsway Moonlight Ave. Kingsway														
	Southbound						Westbound						orthbour	d							
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
7:30 AM	1	0	0	0	1	1	243	1	0	245	4	1	16	0	21	7	97	7	1	111	378
7:45 AM	0	0	0	0	0	2	266	2	0	270	7	1	20	0	28	7	122	8	0	137	435
8:00 AM	6	1	0	0	7	3	207	0	0	210	4	0	8	0	12	7	117	5	0	129	358
8:15 AM	6	0	3	0	9	4	166	0	0	170	1	3	9	0	13	10	113	9	0	132	324
Total	13	1	3	0	17	10	882	3	0	895	16	5	53	0	74	31	449	29	1	509	1495
Approach %	76.5	5.9	17.6	-	-	1.1	98.5	0.3	-	-	21.6	6.8	71.6	-	-	6.1	88.2	5.7	-	-	-
Total %	0.9	0.1	0.2	-	1.1	0.7	59.0	0.2	-	59.9	1.1	0.3	3.5	-	4.9	2.1	30.0	1.9	-	34.0	-
PHF	0.542	0.250	0.250	-	0.472	0.625	0.829	0.375	-	0.829	0.571	0.417	0.663	-	0.661	0.775	0.920	0.806	-	0.929	0.859
Lights	8	1	1	-	10	8	836	3	-	847	16	5	52	-	73	23	408	17	-	448	1378
% Lights	61.5	100.0	33.3	-	58.8	80.0	94.8	100.0	-	94.6	100.0	100.0	98.1	-	98.6	74.2	90.9	58.6	-	88.0	92.2
Mediums	5	0	2	-	7	2	31	0	-	33	0	0	1	-	1	8	24	12	-	44	85
% Mediums	38.5	0.0	66.7	-	41.2	20.0	3.5	0.0	-	3.7	0.0	0.0	1.9	-	1.4	25.8	5.3	41.4	-	8.6	5.7
Articulated Trucks	0	0	0	-	0	0	15	0	-	15	0	0	0	-	0	0	17	0	-	17	32
% Articulated Trucks	0.0	0.0	0.0	-	0.0	0.0	1.7	0.0	-	1.7	0.0	0.0	0.0	-	0.0	0.0	3.8	0.0	-	3.3	2.1
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-	-	-	1	-	-
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100.0	-	-

Turning Movement Peak Hour Data Plot (7:30 AM)

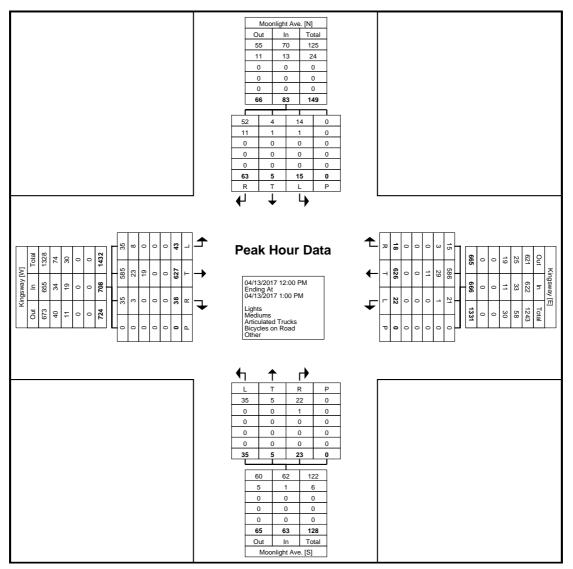


Turning Movement Peak Hour Data (11:00 AM)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						Turn	ing	IVIOV	eme	nt Pe	еак г	Hour	Dat	a (1	1:00	AIVI)						
Start Time Right Thru Left Peds App. Total App. </td <td></td> <td colspan="6">Moonlight Ave.</td> <td colspan="8">Kingsway Moonlight Ave. Kingsway</td> <td>/</td> <td></td> <td></td>		Moonlight Ave.						Kingsway Moonlight Ave. Kingsway								/						
Right Thru Left Peds Protein Total Right Thru Left Peds Right		Southbound						Westbound						orthbour	d							
11:15 AM 9 0 2 0 11 2 115 1 0 118 2 2 4 0 8 12 127 16 0 155 292 11:30 AM 15 1 1 0 17 2 148 2 0 152 4 2 6 1 12 9 143 12 0 164 345 11:45 AM 15 1 0 17 5 140 3 0 148 4 2 8 0 141 10 146 13 0 169 348 Total 56 4 5 0 65 15 546 8 0 569 12 8 28 1 48 32 532 49 0 613 1295 Approach 8 86.2 6.2 7.7 - 2.6 60.0 1.4 - - 0.936 0.750 10.00 0.00 0.00 0.00 0.00 0.00 0.	Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	
11:30 AM 15 1 1 0 17 2 148 2 0 152 4 2 6 1 12 9 143 12 0 164 345 11:30 AM 15 1 1 0 17 2 148 2 0 152 4 2 6 1 12 9 143 12 0 164 345 11:45 AM 15 1 0 17 5 140 3 0 148 4 2 8 0 14 10 146 13 0 169 348 Total 56 4 5 0 65 15 546 8 0 563 - 5.2 86.8 8.0 - - - - - - 11.3 3.8 - 7.3 - - - - - 2.0 16.7 58.3 - 5.2 86.8 8.0 - - - - - - - -	11:00 AM	17	2	1	0	20	6	143	2	0	151	2	2	10	0	14	1	116	8	0	125	310
11:45 AM 15 1 1 0 17 5 140 3 0 148 4 2 8 0 14 10 146 13 0 169 348 Total 56 4 5 0 65 15 546 8 0 569 12 8 28 1 48 32 532 49 0 613 1295 Approach % 86.2 6.2 7.7 - - 2.6 96.0 1.4 - 25.0 16.7 58.3 - 5.2 86.8 8.0 - - - - 7.0 0.6 2.2 0.6 2.5 11.0 1.0 14 10 148 32 532 4.3 10.0 6.0 0.70 0.857 0.667 0.911 0.766 0.907 0.930 0.8 28 - 46 30 490 42 - 562 1204 % Lights 89.3 100.0 100.0 90.8 93.3 94.3 100.0	11:15 AM	9	0	2	0	11	2	115	1	0	118	2	2	4	0	8	12	127	16	0	155	292
Total 56 4 5 0 65 15 546 8 0 559 12 8 28 1 48 32 532 49 0 613 129 Approach % 86.2 6.2 7.7 - 2.6 96.0 1.4 - 25.0 16.7 58.3 - 5.2 86.8 8.0 - - - - - - - - - - - - - - 25.0 16.7 58.3 - 5.2 86.8 8.0 -	11:30 AM	15	1	1	0	17	2	148	2	0	152	4	2	6	1	12	9	143	12	0	164	345
Approach % 86.2 6.2 7.7 - 2.6 96.0 1.4 - 25.0 16.7 58.3 - - 5.2 86.8 8.0 -	11:45 AM	15	1	1	0	17	5	140	3	0	148	4	2	8	0	14	10	146	13	0	169	348
Total % 4.3 0.3 0.4 - 5.0 1.2 42.2 0.6 - 43.9 0.9 0.6 2.2 - 3.7 2.5 41.1 3.8 - 47.3 - PHF 0.824 0.500 0.625 - 0.813 0.625 0.922 0.667 - 0.936 0.750 1.000 0.700 - 0.857 0.667 0.911 0.766 - 0.907 0.930 Lights 50 4 5 - 59 14 515 8 - 537 10 8 28 - 46 30 490 42 - 562 1204 % Lights 89.3 100.0 100.0 - 90.8 93.3 94.3 100.0 - 95.8 93.8 92.1 85.7 - 91.7 93.0 Mediums 10.7 0.0 0.0 - 4.2 0.0 - 4.2 6.3 5.5 14.3 - 6.2 5.4 Articulated Trucks 0 <td>Total</td> <td>56</td> <td>4</td> <td>5</td> <td>0</td> <td>65</td> <td>15</td> <td>546</td> <td>8</td> <td>0</td> <td>569</td> <td>12</td> <td>8</td> <td>28</td> <td>1</td> <td>48</td> <td>32</td> <td>532</td> <td>49</td> <td>0</td> <td>613</td> <td>1295</td>	Total	56	4	5	0	65	15	546	8	0	569	12	8	28	1	48	32	532	49	0	613	1295
PHF 0.824 0.500 0.625 - 0.813 0.625 0.920 0.667 - 0.936 0.750 1.000 0.700 - 0.857 0.667 0.911 0.766 - 0.936 0.750 1.000 0.700 - 0.857 0.667 0.911 0.766 - 0.936 0.750 1.000 0.700 - 0.857 0.667 0.911 0.766 - 0.936 0.330 Mediums 6 0 0 - 6 1 23 0 - 24 2 0 0 2 2 9 7 - 38 70 % Mediums 10.7 0.0 0.0 - 9.2 6.7 4.2 0.0 - 4.2 6.3 5.5 14.3 - 6.2 5.4 Articulated 0 0 0 - 0 0 - 0 0 0 0 - 13	Approach %	86.2	6.2	7.7	-	-	2.6	96.0	1.4	-	-	25.0	16.7	58.3	-	-	5.2	86.8	8.0	-	-	-
Lights 50 4 5 - 59 14 515 8 - 537 10 8 28 - 46 30 490 42 - 562 1204 % Lights 89.3 100.0 100.0 - 90.8 93.3 94.3 100.0 - 94.4 83.3 100.0 - 95.8 93.8 92.1 85.7 - 91.7 93.0 Mediums 6 0 0 - 6.1 23 0 - 24 2 0 0 - 2 2 9 7 - 38 70 % Mediums 10.7 0.0 0.0 - 92.6 6.7 4.2 0.0 - 4.2 6.3 5.5 14.3 - 6.2 5.4 Articulated Trucks 0 0 0 0 - 1.4 0.0 0.0 0.0 0.0 2.4 0.0 <t< td=""><td>Total %</td><td>4.3</td><td>0.3</td><td>0.4</td><td>-</td><td>5.0</td><td>1.2</td><td>42.2</td><td>0.6</td><td>-</td><td>43.9</td><td>0.9</td><td>0.6</td><td>2.2</td><td>-</td><td>3.7</td><td>2.5</td><td>41.1</td><td>3.8</td><td>-</td><td>47.3</td><td>-</td></t<>	Total %	4.3	0.3	0.4	-	5.0	1.2	42.2	0.6	-	43.9	0.9	0.6	2.2	-	3.7	2.5	41.1	3.8	-	47.3	-
% Lights 89.3 100.0 100.0 - 90.8 93.3 94.3 100.0 - 94.4 83.3 100.0 100.0 - 95.8 93.8 92.1 85.7 - 91.7 93.0 Mediums 6 0 0 - 6 1 23 0 - 24 2 0 0 - 2 2 29 7 - 38 70 % Mediums 10.7 0.0 0.0 - 92.2 6.7 4.2 0.0 - 4.2 16.7 0.0 0.0 - 13 21 % Articulated Trucks 0 0 0 - 0.0 8 0 - 14 0.0 0.0 - 0.0 13 0 - 13 21 % Articulated Trucks 0.0 0.0 0.0 1.5 0.0 - 1.4 0.0 0.0 0.0 0.0 2.4 <td< td=""><td>PHF</td><td>0.824</td><td>0.500</td><td>0.625</td><td>-</td><td>0.813</td><td>0.625</td><td>0.922</td><td>0.667</td><td>-</td><td>0.936</td><td>0.750</td><td>1.000</td><td>0.700</td><td>-</td><td>0.857</td><td>0.667</td><td>0.911</td><td>0.766</td><td>-</td><td>0.907</td><td>0.930</td></td<>	PHF	0.824	0.500	0.625	-	0.813	0.625	0.922	0.667	-	0.936	0.750	1.000	0.700	-	0.857	0.667	0.911	0.766	-	0.907	0.930
Mediums 6 0 - 6 1 23 0 - 24 2 0 0 - 2 2 29 7 - 38 70 % Mediums 10.7 0.0 0.0 - 9.2 6.7 4.2 0.0 - 4.2 16.7 0.0 0.0 - 4.2 6.3 5.5 14.3 - 6.2 5.4 Articulated Trucks 0 0 0 - 0 0 8 0 - 8 0 0 0 13 0 - 13 21 % Articulated Trucks 0.0 0.0 0.0 1.5 0.0 - 1.4 0.0 0.0 0.0 2.4 0.0 - 2.1 1.6 Bicycles on Road 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Lights	50	4	5	-	59	14	515	8	-	537	10	8	28	-	46	30	490	42	-	562	1204
% Mediums 10.7 0.0 0.0 - 9.2 6.7 4.2 0.0 - 4.2 16.7 0.0 0.0 - 4.2 6.3 5.5 14.3 - 6.2 5.4 Articulated Trucks 0 0 0 - 0 8 0 - 8 0 0 - 0 13 0 - 13 21 % Articulated Trucks 0.0 0.0 0.0 1.5 0.0 - 14 0.0 0.0 0.0 1.3 0 - 13 21 % Articulated Trucks 0.0 0.0 0.0 1.5 0.0 - 1.4 0.0 0.0 0.0 2.4 0.0 - 2.1 1.6 Bicycles on Road 0.0 0.0 - 0.0 0.0 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	% Lights	89.3	100.0	100.0	-	90.8	93.3	94.3	100.0	-	94.4	83.3	100.0	100.0	-	95.8	93.8	92.1	85.7	-	91.7	93.0
Articulated Trucks 0 0 0 - 0 8 0 - 8 0 0 0 13 0 - 13 21 % Articulated Trucks 0.0 0.0 0.0 - 0.0 1.5 0.0 - 1.4 0.0 0.0 0.0 2.4 0.0 - 2.1 1.6 Bicycles on Road 0 0 0 - 0 0 - 0 0 0 - 2.1 1.6 Bicycles on Road 0.0 0.0 - 0.0 0.0 0.0 - 0.0 <	Mediums	6	0	0	-	6	1	23	0	-	24	2	0	0	-	2	2	29	7	-	38	70
Trucks 0 0 0 0 8 0 - 8 0 0 - 0 13 0 - 13 21 % Articulated Trucks 0.0 0.0 0.0 0.0 - 0.0 1.5 0.0 - 1.4 0.0 0.0 0.0 - 2.4 0.0 - 2.1 1.6 Bicycles on Road 0	% Mediums	10.7	0.0	0.0	-	9.2	6.7	4.2	0.0	-	4.2	16.7	0.0	0.0	-	4.2	6.3	5.5	14.3	-	6.2	5.4
Trucks 0.0 0.0 0.0 0.0 1.3 0.0 1.4 0.0 0.0 0.0 1.4 0.0 0.0 0.0 1.4 0.0 0.0 0.0 1.4 0.0 0.0 0.0 1.4 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0 2.4 0.0 - 2.1 1.6 Bicycles on Road 0.0 <td></td> <td>0</td> <td>0</td> <td>0</td> <td>-</td> <td>0</td> <td>0</td> <td>8</td> <td>0</td> <td>-</td> <td>8</td> <td>0</td> <td>0</td> <td>0</td> <td>-</td> <td>0</td> <td>0</td> <td>13</td> <td>0</td> <td>-</td> <td>13</td> <td>21</td>		0	0	0	-	0	0	8	0	-	8	0	0	0	-	0	0	13	0	-	13	21
Road 0		0.0	0.0	0.0	-	0.0	0.0	1.5	0.0	-	1.4	0.0	0.0	0.0	-	0.0	0.0	2.4	0.0	-	2.1	1.6
Road 0.0 <td>Bicycles on Road</td> <td>0</td> <td>0</td> <td>0</td> <td>-</td> <td>0</td> <td>0</td>	Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
Crósswalk - - 0 - 0 - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - 1 - - 0 - - 1 - - 0 - - 1 - - 0 - - 1 - 1 - 1 - 1 - 1 - 1 1 1 1 <th1< th=""> <th1< th=""> <th1< t<="" td=""><td>% Bicycles on Road</td><td>0.0</td><td>0.0</td><td>0.0</td><td>-</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>-</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>-</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>-</td><td>0.0</td><td>0.0</td></th1<></th1<></th1<>	% Bicycles on Road	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0
Crosswalk -	Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
		-	-	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	-	-	-	-	-
% Pedestrians	Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	1	-	-	-	-	0	-	-
	% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	100.0	-	-	-	-	-	-	-

Count Name: Kingsway at Moonlight Ave. Site Code: 00579103 Start Date: 04/12/2017 Page No: 9

Turning Movement Peak Hour Data Plot (11:00 AM)

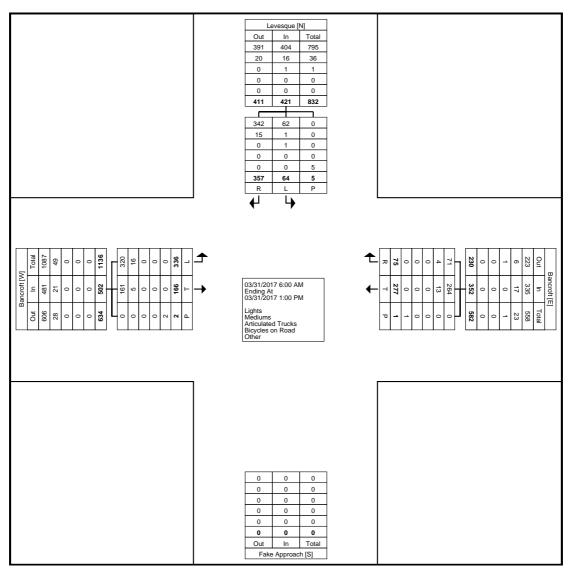


Turning Movement Peak Hour Data (12:00 PM)

Moonlight Ave. Kingsway Moonlight Ave. Kingsway Moonlight Ave. Kingsway	Int. Total 393 374
Start Time Right Thru Left Peds App. Total App. Total Right Thru Left Peds App. Total App. Total Right Thru Left Peds App. Total App. Total 12:00 PM 18 1 1 0 20 5 158 6 0 162 5 1 4 0 10 9 161 11 0 181 12:30 PM 16 0 3 0 167 4 0 172 6 3 11 0 20 7 142 11 0 160 12:	Total 393
Right Thru Left Peds App. Total Right Thru Left Peds App. Total 12:00 PM 18 1 1 0 20 5 158 6 0 169 5 1 7 0 13 14 164 13 0 191 12:15 PM 13 2 6 0 21 8 151 3 0 162 5 1 4 0 10 9 161 11 0 181 12:30 PM 16 2 5 0 23 4 150 9 0 133 0 20 7 142 11 <td>Total 393</td>	Total 393
12:15 PM 13 2 6 0 21 8 151 3 0 162 5 1 4 0 10 9 161 11 0 181 12:15 PM 16 0 3 0 19 1 167 4 0 172 6 3 11 0 20 7 142 11 0 160 12:45 PM 16 2 5 0 23 4 150 9 0 163 7 0 13 0 20 8 160 8 0 176 Total 63 5 15 0 83 18 626 22 0 666 23 5 35 0 63 38 627 43 0 708 Approach % 75.9 6.0 18.1 - - 2.7 94.0 3.3 - - 36.5 7.9 55.6 - - 5.4 88.6 6.1 - - - 7 4	
12:30 PM 16 0 3 0 19 1 167 4 0 172 6 3 11 0 20 7 142 11 0 160 12:45 PM 16 2 5 0 23 4 150 9 0 163 7 0 13 0 20 8 160 8 0 176 Total 63 5 15 0 83 18 626 22 0 666 23 5 35 0 63 38 627 43 0 708 Approach % 75.9 6.0 18.1 - - 2.7 94.0 3.3 - - 36.5 7.9 55.6 - - 5.4 88.6 6.1 - - Total % 4.1 0.3 1.0 - 5.5 1.2 41.2 1.4 - 43.8 1.5 0.3 2.3 - 4.1 2.5 41.3 2.8 - 46.6	374
12:45 PM 16 2 5 0 23 4 150 9 0 163 7 0 13 0 20 8 160 8 0 176 Total 63 5 15 0 83 18 626 22 0 666 23 5 35 0 63 38 627 43 0 708 Approach % 75.9 6.0 18.1 - - 2.7 94.0 3.3 - - 36.5 7.9 55.6 - - 5.4 88.6 6.1 - - Total % 4.1 0.3 1.0 - 5.5 1.2 41.2 1.4 - 43.8 1.5 0.3 2.3 - 4.1 2.5 41.3 2.8 - 46.6	517
Total 63 5 15 0 83 18 626 22 0 666 23 5 35 0 63 38 627 43 0 708 Approach % 75.9 6.0 18.1 - - 2.7 94.0 3.3 - - 36.5 7.9 55.6 - - 5.4 88.6 6.1 - - Total % 4.1 0.3 1.0 - 5.5 1.2 41.2 1.4 - 43.8 1.5 0.3 2.3 - 4.1 2.5 41.3 2.8 - 46.6	371
Approach % 75.9 6.0 18.1 - 2.7 94.0 3.3 - - 36.5 7.9 55.6 - - 5.4 88.6 6.1 - - Total % 4.1 0.3 1.0 - 5.5 1.2 41.2 1.4 - 43.8 1.5 0.3 2.3 - 4.1 2.5 41.3 2.8 - 46.6	382
Total % 4.1 0.3 1.0 - 5.5 1.2 41.2 1.4 - 43.8 1.5 0.3 2.3 - 4.1 2.5 41.3 2.8 - 46.6	1520
	-
	-
PHF 0.875 0.625 0.625 - 0.902 0.563 0.937 0.611 - 0.968 0.821 0.417 0.673 - 0.788 0.679 0.956 0.827 - 0.927).967
Lights 52 4 14 - 70 15 586 21 - 622 22 5 35 - 62 35 585 35 - 655	1409
% Lights 82.5 80.0 93.3 - 84.3 83.3 93.6 95.5 - 93.4 95.7 100.0 100.0 - 98.4 92.1 93.3 81.4 - 92.5	92.7
Mediums 11 1 1 - 13 3 29 1 - 33 1 0 0 - 1 3 23 8 - 34	81
% Mediums 17.5 20.0 6.7 - 15.7 16.7 4.6 4.5 - 5.0 4.3 0.0 0.0 - 1.6 7.9 3.7 18.6 - 4.8	5.3
Articulated Trucks 0 0 0 - 0 11 0 0 0 - 19 0 - 19	30
% Articulated Trucks 0.0 0.0 0.0 1.8 0.0 1.7 0.0 0.0 0.0 3.0 0.0 2.7	2.0
Bicycles on Road 0 0 0 - 0 0 0 0 - 0 0 0 0 - 0 0 0 0 - 0	0
% Bicycles on Road 0.0	0.0
Bicycles on Crosswalk 0 0 0 0 0 - 0 - 0	-
% Bicycles on Crosswalk	-
Pedestrians 0 0 0 0 0 -	-
% Pedestrians	

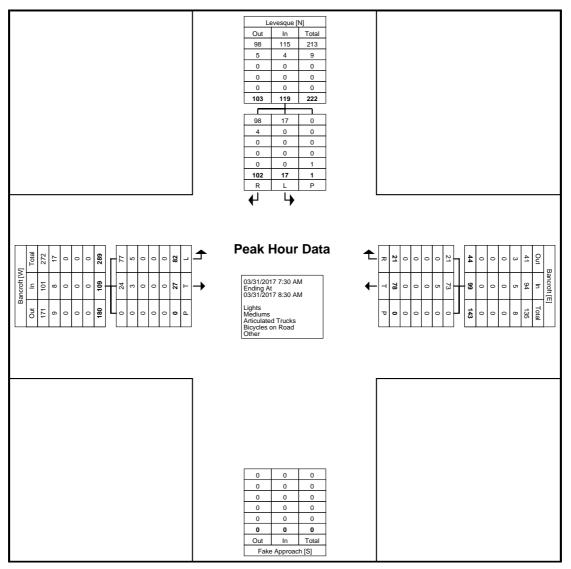
Count Name: Kingsway at Moonlight Ave. Site Code: 00579103 Start Date: 04/12/2017 Page No: 11

Turning Movement Peak Hour Data Plot (12:00 PM)


Count Name: Kingsway at Moonlight Ave. Site Code: 00579103 Start Date: 04/12/2017 Page No: 12

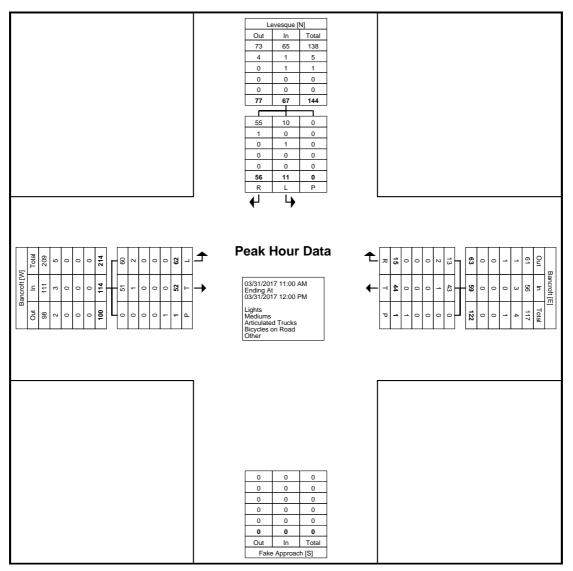
Turning Movement Data

				IU	irning i	Vlovem	ient Da	ata					
		Leve	sque			Ban	croft			Bar	croft		
Start Time		South	bound			West	bound			East	bound		
Start Time	Right	Left	Peds	App. Total	Right	Thru	Peds	App. Total	Thru	Left	Peds	App. Total	Int. Total
6:00 AM	8	0	0	8	1	2	0	3	1	10	0	11	22
6:15 AM	5	0	0	5	2	5	0	7	2	5	0	7	19
6:30 AM	13	2	0	15	5	17	0	22	3	11	0	14	51
6:45 AM	18	5	0	23	9	11	0	20	8	15	0	23	66
Hourly Total	44	7	0	51	17	35	0	52	14	41	0	55	158
7:00 AM	24	2	0	26	6	19	0	25	6	18	0	24	75
7:15 AM	19	1	4	20	2	25	0	27	9	24	0	33	80
7:30 AM	26	3	0	29	6	21	0	27	7	28	0	35	91
7:45 AM	25	7	1	32	6	12	0	18	9	21	0	30	80
Hourly Total	94	13	5	107	20	77	0	97	31	91	0	122	326
8:00 AM	22	3	0	25	6	22	0	28	7	12	0	19	72
8:15 AM	29	4	0	33	3	23	0	26	4	21	0	25	84
8:30 AM	18	5	0	23	4	20	0	24	7	23	0	30	77
8:45 AM	25	8	0	33	1	17	0	18	8	23	0	31	82
Hourly Total	94	20	0	114	14	82	0	96	26	79	0	105	315
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-
11:00 AM	10	4	0	14	3	8	0	11	13	14	0	27	52
11:15 AM	17	2	0	19	5	13	0	18	17	16	0	33	70
11:30 AM	13	3	0	16	3	11	0	14	9	17	0	26	56
11:45 AM	16	2	0	18	4	12	1	16	13	15	1	28	62
Hourly Total	56	11	0	67	15	44	1	59	52	62	1	114	240
12:00 PM	18	2	0	20	0	6	0	6	10	15	0	25	51
12:15 PM	15	3	0	18	2	10	0	12	7	14	1	21	51
12:30 PM	16	2	0	18	2	12	0	14	10	18	0	28	60
12:45 PM	20	6	0	26	5	11	0	16	16	16	0	32	74
Hourly Total	69	13	0	82	9	39	0	48	43	63	1	106	236
Grand Total	357	64	5	421	75	277	1	352	166	336	2	502	1275
Approach %	84.8	15.2	-	-	21.3	78.7	-	-	33.1	66.9	-	-	-
Total %	28.0	5.0	-	33.0	5.9	21.7	-	27.6	13.0	26.4	-	39.4	-
Lights	342	62	-	404	71	264	-	335	161	320	-	481	1220
% Lights	95.8	96.9	-	96.0	94.7	95.3	-	95.2	97.0	95.2	-	95.8	95.7
Mediums	15	1	-	16	4	13	-	17	5	16	-	21	54
% Mediums	4.2	1.6	-	3.8	5.3	4.7	-	4.8	3.0	4.8	-	4.2	4.2
Articulated Trucks	0	1	-	1	0	0	-	0	0	0	-	0	1
% Articulated Trucks	0.0	1.6	-	0.2	0.0	0.0	-	0.0	0.0	0.0	-	0.0	0.1
Bicycles on Road	0	0	-	0	0	0	-	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	-	0.0	0.0	0.0	-	0.0	0.0	0.0	-	0.0	0.0
Bicycles on Crosswalk	-	-	0	-	-	-	0	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	0.0	-	-	-	0.0	-	-	-	0.0	-	-
Pedestrians	-	-	5	-	-	-	1	-	-	-	2	-	-
% Pedestrians	-	-	100.0	-	-	-	100.0	-	-	-	100.0	-	-


Turning Movement Data Plot

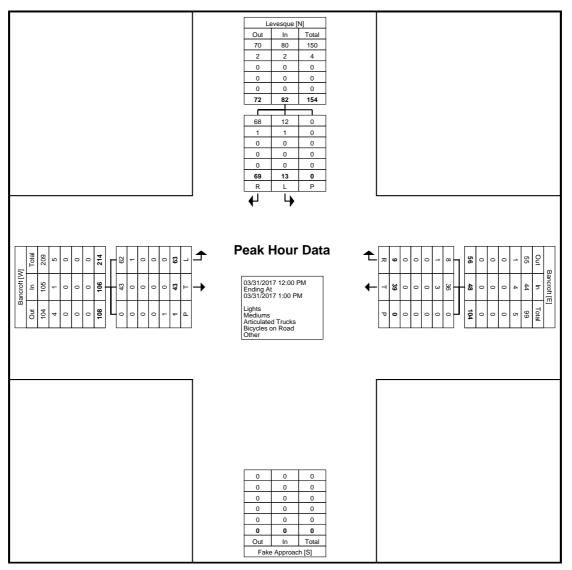
Turning Movement Peak Hour Data (7:30 AM)

			Turnir	ig move	ement	Реак г		ala (7.3	DU AIVI)				
		Leve	sque			Ban	croft			Ban	croft		
Start Time		South	bound			West	bound			Eastb	ound		
Start Time	Right	Left	Peds	App. Total	Right	Thru	Peds	App. Total	Thru	Left	Peds	App. Total	Int. Total
7:30 AM	26	3	0	29	6	21	0	27	7	28	0	35	91
7:45 AM	25	7	1	32	6	12	0	18	9	21	0	30	80
8:00 AM	22	3	0	25	6	22	0	28	7	12	0	19	72
8:15 AM	29	4	0	33	3	23	0	26	4	21	0	25	84
Total	102	17	1	119	21	78	0	99	27	82	0	109	327
Approach %	85.7	14.3	-	-	21.2	78.8	-	-	24.8	75.2	-	-	-
Total %	31.2	5.2	-	36.4	6.4	23.9	-	30.3	8.3	25.1	-	33.3	-
PHF	0.879	0.607	-	0.902	0.875	0.848	-	0.884	0.750	0.732	-	0.779	0.898
Lights	98	17	-	115	21	73	-	94	24	77	-	101	310
% Lights	96.1	100.0	-	96.6	100.0	93.6	-	94.9	88.9	93.9	-	92.7	94.8
Mediums	4	0	-	4	0	5	-	5	3	5	-	8	17
% Mediums	3.9	0.0	-	3.4	0.0	6.4	-	5.1	11.1	6.1	-	7.3	5.2
Articulated Trucks	0	0	-	0	0	0	-	0	0	0	-	0	0
% Articulated Trucks	0.0	0.0	-	0.0	0.0	0.0	-	0.0	0.0	0.0	-	0.0	0.0
Bicycles on Road	0	0	-	0	0	0	-	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	-	0.0	0.0	0.0	-	0.0	0.0	0.0	-	0.0	0.0
Bicycles on Crosswalk	-	-	0	-	-	-	0	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	0.0	-	-	-	-	-	-	-	-	-	-
Pedestrians	-	-	1	-	-	-	0	-	-	-	0	-	-
% Pedestrians	-	-	100.0	-	-	-	-	-	-	-	-	-	-


Turning Movement Peak Hour Data Plot (7:30 AM)

Turning Movement Peak Hour Data (11:00 AM)

			unnin	y wove	пени г	еак п		ata (11.)			
		Leve	sque			Ban	croft			Ban	croft		
Start Time		South	bound			West	bound			Easth	ound		
Start Time	Right	Left	Peds	App. Total	Right	Thru	Peds	App. Total	Thru	Left	Peds	App. Total	Int. Total
11:00 AM	10	4	0	14	3	8	0	11	13	14	0	27	52
11:15 AM	17	2	0	19	5	13	0	18	17	16	0	33	70
11:30 AM	13	3	0	16	3	11	0	14	9	17	0	26	56
11:45 AM	16	2	0	18	4	12	1	16	13	15	1	28	62
Total	56	11	0	67	15	44	1	59	52	62	1	114	240
Approach %	83.6	16.4	-	-	25.4	74.6	-	-	45.6	54.4	-	-	-
Total %	23.3	4.6	-	27.9	6.3	18.3	-	24.6	21.7	25.8	-	47.5	-
PHF	0.824	0.688	-	0.882	0.750	0.846	-	0.819	0.765	0.912	-	0.864	0.857
Lights	55	10	-	65	13	43	-	56	51	60	-	111	232
% Lights	98.2	90.9	-	97.0	86.7	97.7	-	94.9	98.1	96.8	-	97.4	96.7
Mediums	1	0	-	1	2	1	-	3	1	2	-	3	7
% Mediums	1.8	0.0	-	1.5	13.3	2.3	-	5.1	1.9	3.2	-	2.6	2.9
Articulated Trucks	0	1	-	1	0	0	-	0	0	0	-	0	1
% Articulated Trucks	0.0	9.1	-	1.5	0.0	0.0	-	0.0	0.0	0.0	-	0.0	0.4
Bicycles on Road	0	0	-	0	0	0	-	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	-	0.0	0.0	0.0	-	0.0	0.0	0.0	-	0.0	0.0
Bicycles on Crosswalk	-	-	0	-	-	-	0	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	0.0	-	-	-	0.0	-	-
Pedestrians	-	-	0	-	-	-	1	-	-	-	1	-	-
% Pedestrians	-	-	-	-	-	-	100.0	-	-	-	100.0	-	-

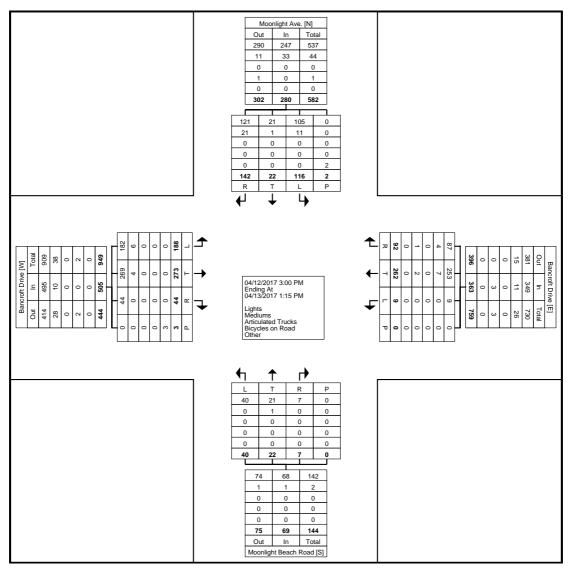

Turning Movement Peak Hour Data Plot (11:00 AM)

Turning Movement Peak Hour Data (12:00 PM)

			unnin	g wove	пени г	еак п		ala (12.)			
		Leve	sque			Ban	croft			Ban	croft		
Start Time		South	bound			West	ound			Eastb	ound		
Start Time	Right	Left	Peds	App. Total	Right	Thru	Peds	App. Total	Thru	Left	Peds	App. Total	Int. Total
12:00 PM	18	2	0	20	0	6	0	6	10	15	0	25	51
12:15 PM	15	3	0	18	2	10	0	12	7	14	1	21	51
12:30 PM	16	2	0	18	2	12	0	14	10	18	0	28	60
12:45 PM	20	6	0	26	5	11	0	16	16	16	0	32	74
Total	69	13	0	82	9	39	0	48	43	63	1	106	236
Approach %	84.1	15.9	-	-	18.8	81.3	-	-	40.6	59.4	-	-	-
Total %	29.2	5.5	-	34.7	3.8	16.5	-	20.3	18.2	26.7	-	44.9	-
PHF	0.863	0.542	-	0.788	0.450	0.813	-	0.750	0.672	0.875	-	0.828	0.797
Lights	68	12	-	80	8	36	-	44	43	62	-	105	229
% Lights	98.6	92.3	-	97.6	88.9	92.3	-	91.7	100.0	98.4	-	99.1	97.0
Mediums	1	1	-	2	1	3	-	4	0	1	-	1	7
% Mediums	1.4	7.7	-	2.4	11.1	7.7	-	8.3	0.0	1.6	-	0.9	3.0
Articulated Trucks	0	0	-	0	0	0	-	0	0	0	-	0	0
% Articulated Trucks	0.0	0.0	-	0.0	0.0	0.0	-	0.0	0.0	0.0	-	0.0	0.0
Bicycles on Road	0	0	-	0	0	0	-	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	-	0.0	0.0	0.0	-	0.0	0.0	0.0	-	0.0	0.0
Bicycles on Crosswalk	-	-	0	-	-	-	0	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	0.0	-	-
Pedestrians	-	-	0	-	-	-	0	-	-	-	1	-	-
% Pedestrians	-	-	-	-	-	-	-	-	-	-	100.0	-	-

Turning Movement Peak Hour Data Plot (12:00 PM)

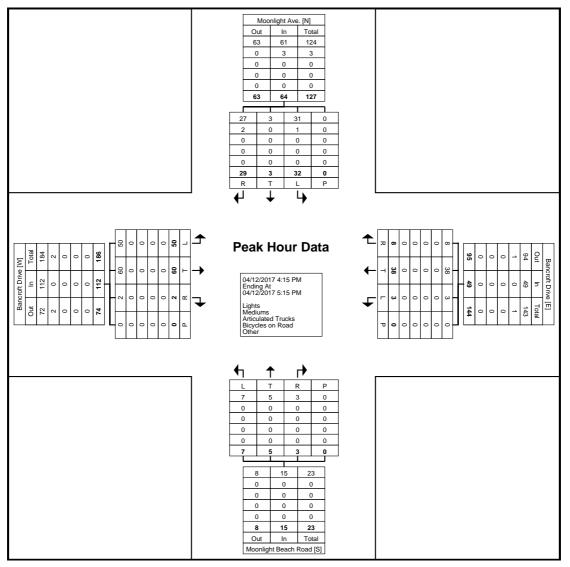
Count Name: Bancroft @ Levesque Site Code: 00855103 Start Date: 03/31/2017 Page No: 9


Turning Movement Data

Note Note Note Note No		I	Ма	onlight (1.10		I				1000				h Deed		1	De				I
Bent Tree Age Tree Age Age Tree Age Age Age				-										-								
Help Ind Ind Mode Sign No Lat Poice Yead No Yead Yead No Yead No Yead Yea	Start Time		S	outhbou	nd			v	Vestbour	nd			N	lorthboui	nd			E	astboun	d		
330 PM 4 1 1 0 5 4 0 0 1 3 0 4 3 0 4 3 0 4 3 0 4 3 0 4 3 3 3 0 0 1 1 0 1 1 3 0 1 1 3 0 1 1 3 0 1 <td>Otart Time</td> <td>Right</td> <td>Thru</td> <td>Left</td> <td>Peds</td> <td>App. Total</td> <td>Right</td> <td>Thru</td> <td>Left</td> <td>Peds</td> <td>App. Total</td> <td>Right</td> <td>Thru</td> <td>Left</td> <td>Peds</td> <td></td> <td>Right</td> <td>Thru</td> <td>Left</td> <td>Peds</td> <td>App. Total</td> <td></td>	Otart Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds		Right	Thru	Left	Peds	App. Total	
3359M 1 2 2 0 5 6 7 0 1 0 <td>3:00 PM</td> <td>4</td> <td>1</td> <td>1</td> <td>0</td> <td>6</td> <td>2</td> <td>6</td> <td>0</td> <td>0</td> <td>8</td> <td>0</td> <td>1</td> <td>3</td> <td>0</td> <td>4</td> <td>3</td> <td>11</td> <td>3</td> <td>0</td> <td>17</td> <td>35</td>	3:00 PM	4	1	1	0	6	2	6	0	0	8	0	1	3	0	4	3	11	3	0	17	35
3359M 1 2 2 0 5 6 7 0 1 0 <td>3:15 PM</td> <td>2</td> <td>1</td> <td>2</td> <td>0</td> <td>5</td> <td>4</td> <td>4</td> <td>0</td> <td>0</td> <td>8</td> <td>0</td> <td>0</td> <td>2</td> <td>0</td> <td>2</td> <td>1</td> <td>12</td> <td>7</td> <td>0</td> <td>20</td> <td>35</td>	3:15 PM	2	1	2	0	5	4	4	0	0	8	0	0	2	0	2	1	12	7	0	20	35
Houry form IO 5 8 0 2 6 0 1 6 0 7 7 7 0 18 47 430 PM 6 2 6 0 11 0 0 17 1 2 0 0 1 1 0 2 0 11 10 22 61 430 PM 6 0 11 0 1 1 0 1 1 0 2 0 11 1 0 2 1 11 0 1 1 0 1 1 0 2 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 <	3:30 PM	1	2	2	0	5	6	7	0	0	13	0	0	1	0	1	0	8	10	0	18	37
Houry form IO 5 8 0 2 6 0 1 6 0 7 7 7 0 18 47 430 PM 6 2 6 0 11 0 0 17 1 2 0 0 1 1 0 2 0 11 10 22 61 430 PM 6 0 11 0 1 1 0 1 1 0 2 0 11 1 0 2 1 11 0 1 1 0 1 1 0 2 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 <		3	1	3	0	7	4	4	0	0		0	0	0	0	0	3					
400PM 3 3 2 6 0 1 5 9 0 0 3 3 9 7 0 9 7 0 9 7 0 9 7 0 3 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 3 1 1 1 0 3 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 <td>Hourly Total</td> <td>10</td> <td>5</td> <td>8</td> <td>0</td> <td>23</td> <td>16</td> <td>21</td> <td>0</td> <td>0</td> <td>37</td> <td>0</td> <td>1</td> <td>6</td> <td>0</td> <td>7</td> <td>7</td> <td>45</td> <td>29</td> <td>0</td> <td>81</td> <td>148</td>	Hourly Total	10	5	8	0	23	16	21	0	0	37	0	1	6	0	7	7	45	29	0	81	148
419 6 2 6 0 1 0 7 1 2 4 0 7 1 1 0 7 1 0 7 1 0 7 1 0 7 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <th1< th=""> 1 1 1</th1<>		3		-		-	1			-		1	2		-	3					-	
430 PM 3 0 1 0 1 0 2 0 1 0 2 1 1 0 23 5 1 11 0 23 5 Houry Total 27 4 28 0 7 9 38 0 48 4 7 6 0 1 1 0 28 41 0 28 7 S30 PM 0 1 1 0 1 1 1 0 1 1 0 3 2 16 0 28 9 0 2 16 0 2 16 0 16 15 16 0 1 1 0 1 18 18 18 17 18 <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>12</td> <td></td> <td></td> <td></td>												1							12			
Houry Total Zr 4 20 0 30 3 0 48 4 7 6 0 17 0 0 10 1 0 30 40 41 0 0 1 0 10 10 0 10 0 10	4:30 PM	8	0	11	0	19	4	11	2	0	17	1	0	1	0	2	0	12	11	0	23	61
Houry Total Zr 4 20 0 30 3 0 48 4 7 6 0 17 0 0 10 1 0 30 40 41 0 0 1 0 10 10 0 10 0 10	4:45 PM	10	0	3	0	13	0	10	0	0	10	1	3	1	0	5	1	14	11	0	26	54
stsphy 9 0 7 0 1 1 1 1 1 1 1 0 2 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 0 1 0 <td>Hourly Total</td> <td>27</td> <td>4</td> <td>26</td> <td>0</td> <td>57</td> <td>9</td> <td>36</td> <td>3</td> <td>0</td> <td>48</td> <td>4</td> <td>7</td> <td>6</td> <td>0</td> <td>17</td> <td>5</td> <td>49</td> <td>41</td> <td>0</td> <td>95</td> <td>217</td>	Hourly Total	27	4	26	0	57	9	36	3	0	48	4	7	6	0	17	5	49	41	0	95	217
S30 PM 2 1 2 0 5 1 1 0 1 0 2 1 6 0 5 2 G40 PM 0 <th< td=""><td>5:00 PM</td><td>5</td><td>1</td><td>12</td><td>0</td><td>18</td><td>4</td><td>11</td><td>0</td><td>0</td><td>15</td><td>0</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>20</td><td>16</td><td>0</td><td>36</td><td>70</td></th<>	5:00 PM	5	1	12	0	18	4	11	0	0	15	0	0	1	0	1	0	20	16	0	36	70
B30 PM 2 1 1 1 1 1 0 2 0 6 2 0 3 0 3 1 0 2 1 1 0 3 0 3 2 1 0 <td>5:15 PM</td> <td>9</td> <td>0</td> <td>7</td> <td>0</td> <td>16</td> <td>3</td> <td>7</td> <td>0</td> <td>0</td> <td>10</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>3</td> <td>3</td> <td>17</td> <td>6</td> <td>0</td> <td>26</td> <td>55</td>	5:15 PM	9	0	7	0	16	3	7	0	0	10	1	1	1	0	3	3	17	6	0	26	55
Insert Trail 17 2 1 0 <		2	1	2	0		1	11	1	0		1	0	2	0	3	2		13	0		i
Houry Total 11 2 31 0 90 10 32 1 0 43 2 1 5 0 8 9 72 41 0 122 222 COD PM 0		1				-	t						0									
60 PM 0 <td>Hourly Total</td> <td>17</td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td>2</td> <td>1</td> <td>-</td> <td>-</td> <td>•</td> <td>9</td> <td>-</td> <td>•</td> <td>-</td> <td></td> <td></td>	Hourly Total	17		-		-		-			-	2	1	-	-	•	9	-	•	-		
Heady Total 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 <th< td=""><td></td><td>0</td><td>0</td><td></td><td>0</td><td>0</td><td></td><td>0</td><td>0</td><td>0</td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td></td><td></td></th<>		0	0		0	0		0	0	0		0	0	0	0	0	0	0	0	0		
Free OAM 1 0 0 1 1 2 0 1 1 0 0 1 0 1 0 1 1 0 1 <th1< th=""> 1 1<!--</td--><td>*** BREAK ***</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th1<>	*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bit AM 0 0 1 0 3 0 0 3 0 0 2 0 2 0 1 3 0 4 10 Bit AM 2 0 1 0 3 4 8 0 12 0 0 0 1 1 0 5 0 0 7 23 Houry Total 5 0 6 0 11 0 23 0 0 3 1 10 5 0 16 65 37 14 6 5 0 17 0 0 1 0 1 1 0 5 1 1 6 6 30 1 1 0 5 1 1 6 30 1 1 0 1 1 1 0 1	Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e30 AM 2 0 1 0 1 0 1 0 5 0 0 5 21 6:45 AM 2 0 6 0 10 0 0 0 0 0 0 1 4 2 0 7 23 Houry Teal 5 0 6 0 11 5 23 0 0 1 0 1 4 2 0 7 23 TiSAM 4 0 1 6 2 17 0 0 1 0 1 1 2 1 0 4 29 TiSAM 4 0 7 0 2 0 0 1 0 0 1 1 2 1 1 4 29 TiSAM 4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <th1< th=""> 1 1</th1<>	6:00 AM	1	0	0	0	1	1	2	0	0	3	0	0	0	0	0	0	0	0	0	0	4
645 AM 2 0 4 0 6 0 10 0 0 0 0 1 4 2 0 7 733 Houry Total 5 0 6 0 1 5 1 1 0 5 1 1 6 33 7:05 AM 4 0 1 0 5 4 15 0 0 1 0 0 1 1 2 1 0 4 29 7:30 AM 7 0 2 0 0 1 0 1 1 0 4 4 7 3 1 1 0 4 5 0 1 1 0 1 3 1	6:15 AM	0	0	1	0	1	0	3	0	0	3	0	0	2	0	2	0	1	3	0	4	10
Houry Train 5 0 6 0 1 5 2 2 0 0 3 0 3 1 10 5 0 16 88 7:00 AM 4 0 1 0 5 1 1 0 5 1 1 6 83 7:16 AM 4 0 1 0 1 1 0 1 1 6 1 4 23 7:36 AM 7 0 1 8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 7 0 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 3 1	6:30 AM	2	0	1	0	3	4	8	0	0	12	0	0	1	0	1	0	5	0	0	5	21
	6:45 AM	2	0	4	0	6	0	10	0	0	10	0	0	0	0	0	1	4	2	0	7	23
7.15 AM 4 0 5 4 15 0 0 1 0 0 1 1 2 1 0 4 239 7.35 AM 7 0 2 0 0 1 0 1 1 2 1 0 4 239 7.45 AM 4 0 7 0 1 0 1 1 0 1 1 0 1 <t< td=""><td>Hourly Total</td><td>5</td><td>0</td><td>6</td><td>0</td><td>11</td><td>5</td><td>23</td><td>0</td><td>0</td><td>28</td><td>0</td><td>0</td><td>3</td><td>0</td><td>3</td><td>1</td><td>10</td><td>5</td><td>0</td><td>16</td><td>58</td></t<>	Hourly Total	5	0	6	0	11	5	23	0	0	28	0	0	3	0	3	1	10	5	0	16	58
7.46 AM702095170022001010610733337.45 AM40701181200200000009501445Houry Total201011319002200000000001520840815 AM5110745009020000115701332846 AM313071180090240685701537Houry Total23100351239005100 <t< td=""><td>7:00 AM</td><td>5</td><td>1</td><td>0</td><td>1</td><td>6</td><td>2</td><td>15</td><td>0</td><td>0</td><td>17</td><td>0</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>5</td><td>1</td><td>1</td><td>6</td><td>30</td></t<>	7:00 AM	5	1	0	1	6	2	15	0	0	17	0	0	1	0	1	0	5	1	1	6	30
7.45 AM 4 0 7 0 11 8 12 0 0 0 0 0 9 5 0 14 45 Houry Total 20 1 10 1 31 19 69 0 0 1 2 0 0 0 1 15 2 0 84 1 1 1 0 7 1 3 0 1 1 5 7 0 13 3 2 1 4 0 7 0 13 3 1 5 7 0 13 3 2 1 4 0 7 0 13 3 1 3 0 1 1 0 0 1 1 1 0 1 1 1 0 1	7:15 AM	4	0	1	0	5	4	15	0	0	19	0	1	0	0	1	1	2	1	0	4	29
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7:30 AM	7	0	2	0	9	5	17	0	0	22	0	0	1	0	1	0	6	1	0	7	39
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7:45 AM	4	0	7	0	11	8	12	0	0	20	0	0	0	0	0	0	9	5	0	14	45
8:15 AM 5 1 0 7 4 5 0 0 3 0 3 1 5 7 0 13 32 8:45 AM 3 1 3 0 7 1 8 0 0 1 0 1 2 1 4 0 7 30 8:45 AM 3 1 0 7 1 8 0 0 0 1 2 1 4 0 7 30 Badd 0 0 0 7 1 8 0 0 1 2 1 4 0 7 1 30 "BREAK" -	Hourly Total	20	1	10	1	31	19	59	0	0	78	0	1	2	0	3	1	22	8	1	31	143
8:30 AM 7 1 3 0 11 4 7 0 0 11 0 1 0 1 2 1 4 0 7 30 8:45 AM 3 1 3 0 7 1 8 0 9 0 2 4 0 6 3 5 7 0 15 37 Hourly Total 22 3 0 <td< td=""><td>8:00 AM</td><td>7</td><td>0</td><td>3</td><td>0</td><td>10</td><td>3</td><td>19</td><td>0</td><td>0</td><td>22</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>5</td><td>2</td><td>0</td><td>8</td><td>40</td></td<>	8:00 AM	7	0	3	0	10	3	19	0	0	22	0	0	0	0	0	1	5	2	0	8	40
8:45 AM 3 1 3 0 7 1 8 0 0 9 0 2 4 0 6 3 5 7 0 15 37 Houry Total 22 3 10 0 35 12 39 0 0 51 0 3 7 0 10 7 16 20 0 43 139 900 AM 0 10 10	8:15 AM	5	1	1	0	7	4	5	0	0	9	0	0	3	0	3	1	5	7	0	13	32
Hourly Total 22 3 10 0 35 12 39 0 0 51 0 3 7 0 10 7 16 20 0 43 139 "BREAK" - <td< td=""><td>8:30 AM</td><td>7</td><td>1</td><td>3</td><td>0</td><td>11</td><td>4</td><td>7</td><td>0</td><td>0</td><td>11</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td><td>2</td><td>1</td><td>4</td><td>0</td><td>7</td><td>30</td></td<>	8:30 AM	7	1	3	0	11	4	7	0	0	11	0	1	0	0	1	2	1	4	0	7	30
9:00 AM 0 </td <td>8:45 AM</td> <td>3</td> <td>1</td> <td>3</td> <td>0</td> <td>7</td> <td>1</td> <td>8</td> <td>0</td> <td>0</td> <td>9</td> <td>0</td> <td>2</td> <td>4</td> <td>0</td> <td>6</td> <td>3</td> <td>5</td> <td>7</td> <td>0</td> <td>15</td> <td>37</td>	8:45 AM	3	1	3	0	7	1	8	0	0	9	0	2	4	0	6	3	5	7	0	15	37
*** BREAK*** -	Hourly Total	22	3	10	0	35	12	39	0	0	51	0	3	7	0	10	7	16	20	0	43	139
Houry Total 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 <t></t>	9:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 AM 4 0 1 0 5 2 6 0 8 0 2 0 2 1 4 4 1 9 24 11:15 AM 1 2 1 0 4 0 6 5 8 0 0 1 1 10 4 0 15 28 11:15 AM 4 0 2 0 6 5 8 0 0 1 1 1 7 0 9 31 11:15 AM 4 0 2 0 6 0 1 7 0 9 31 11:10 M 4 0 2 0 6 4 2 0 6 4 2 0 6 4 4 10 10 0 2 2 11 3 0 16 34 10 10 1 2 16 10 <t< td=""><td>*** BREAK ***</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></t<>	*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11:15 AM 1 2 1 0 4 0 6 2 0 8 1 0 0 1 1 10 4 0 15 28 11:30 AM 4 0 2 0 6 5 8 0 0 13 0 1 2 0 3 1 1 7 0 9 31 11:45 AM 4 0 2 0 6 0 8 2 0 10 0 0 0 0 1 7 3 0 11 2 0 3 1 1 7 3 0 11 4 0 1 2 0 3 1 1 7 3 0 11 4 11 2 1 3 1 1 1 2 1 1 14 14 11 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>Hourly Total</td> <td>0</td>	Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30 AM4020658001301203117093111:45 AM402060820100000017301127Houry Total13260217284039132064221814411012:05 PM718016250070020231081214612:15 PM51208260140230541050195012:45 PM101411554101003306161001748Houry Total2851815114241039069015103726173178Houry Total2851815114241039069015103726173178Houry Total28518511424103	11:00 AM	4	0	1	0	5	2	6	0	0	8	0	2	0	0	2	1	4	4	1	9	24
11:45 AM 4 0 2 0 6 0 8 2 0 10 0 0 0 0 1 7 3 0 11 27 Hourly Total 13 2 6 0 21 7 28 4 0 39 1 3 2 0 6 4 22 18 1 44 110 12:00 PM 7 1 8 0 16 2 5 0 0 7 0 0 2 3 10 8 1 21 46 12:15 PM 5 1 2 0 8 2 6 0 8 0 1 1 0 5 0 16 34 12:45 PM 10 1 4 1 15 5 4 1 0 10 0 3 3 0 6 1 6 10 0 17 3 178 Hourly Total 28 5 18 5	11:15 AM	1	2	1	0	4	0	6	2	0	8	1	0	0	0	1	1	10	4	0	15	28
Houry Total 13 2 6 0 21 7 28 4 0 39 1 3 2 0 6 4 22 18 1 44 110 12:00 PM 7 1 8 0 16 2 5 0 0 7 0 0 2 0 2 3 10 8 1 21 46 12:15 PM 5 1 2 0 8 2 6 0 0 8 0 1 1 0 2 2 11 3 0 16 34 12:30 PM 6 2 4 0 12 5 9 0 14 0 2 3 0 6 1 6 10 0 17 48 Hourty Total 28 5 18 1 51 14 24 1 0 39 0 <	11:30 AM	4	0	2	0	6	5	8	0	0	13	0	1	2	0	3	1	1	7	0	9	31
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	11:45 AM	4	0	2	0	6	0	8	2	0	10	0	0	0	0	0	1	7	3	0	11	27
12:15 PM 5 1 2 0 8 2 6 0 0 8 0 1 1 0 2 2 11 3 0 16 34 12:30 PM 6 2 4 0 12 5 9 0 0 14 0 2 3 0 5 4 10 5 0 19 50 12:45 PM 10 1 4 1 15 5 4 1 0 10 0 3 3 0 6 1 6 10 0 17 48 Hourly Total 28 5 18 1 51 14 24 1 0 39 0 6 9 0 15 10 37 26 1 73 178 100 PM 0 0 1 0 0 0 0 0 0 0 0 0 0 0 10 13 15 15 17 73 188 <	Hourly Total	13	2	6	0	21	7	28	4	0	39	1	3	2	0	6	4	22	18	1	44	110
12:30 PM 6 2 4 0 12 5 9 0 0 14 0 2 3 0 5 4 10 5 0 19 50 12:45 PM 10 1 4 1 15 5 4 1 0 10 0 3 3 0 6 1 6 10 0 17 48 Hourly Total 28 5 18 1 51 14 24 1 0 39 0 6 9 0 10 37 26 1 73 178 1:00 PM 0 0 1 0	12:00 PM	7	1	8	0	16	2	5	0	0	7	0	0	2	0	2	3	10	8	1	21	46
12:45 PM 10 1 4 1 15 5 4 1 0 10 0 3 3 0 6 1 6 10 0 17 48 Hourly Total 28 5 18 1 51 14 24 1 0 39 0 6 9 0 15 10 37 26 1 73 178 1:00 PM 0 0 1 0 11 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1	12:15 PM	5	1	2	0	8	2	6	0	0	8	0	1	1	0	2	2	11	3	0	16	34
Hourly Total 28 5 18 1 51 14 24 1 0 39 0 6 9 0 15 10 37 26 1 73 178 1:00 PM 0 0 1 0 1 0 11 0 14 22 40 0 68 44 269 182 495 1159	12:30 PM	6	2	4	0	12	5	9	0	0	14	0	2	3	0	5	4	10	5	0	19	50
1:00 PM 0 0 1 0 11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1<	12:45 PM	10	1	4	1	15	5	4	1	0	10	0	3	3	0	6	1	6	10	0	17	48
Grand Total 142 22 116 2 280 92 262 9 0 363 7 22 40 0 69 44 273 188 3 505 1217 Approach % 50.7 7.9 41.4 - - 25.3 72.2 2.5 - - 10.1 31.9 58.0 - - 8.7 54.1 37.2 - - - - - - - 8.7 54.1 37.2 - 0.6 1.8 3.3 - 5.7 3.6 2.4 15.4 - 41.5	Hourly Total	28	5	18	1	-	14	24	1	0	39	0	6	9	0	15	10	37	26	1	73	178
Approach % 50.7 7.9 41.4 - - 25.3 72.2 2.5 - - 10.1 31.9 58.0 - - 8.7 54.1 37.2 - - - - - 10.1 31.9 58.0 - - 8.7 54.1 37.2 - - - - - 10.1 31.9 58.0 - - 8.7 54.1 37.2 - - - - - - 10.1 31.9 58.0 - - 8.7 54.1 37.2 - - - - - 29.8 0.6 1.8 3.3 - 5.7 3.6 22.4 15.4 - 41.5 - 41.5 - 41.5 - 41.5 - 41.5 - 41.5 - 41.5 9.5 90.5 - 88.2 94.6 96.6 100.0 - 11 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1:00 PM	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Total % 11.7 1.8 9.5 - 23.0 7.6 21.5 0.7 - 29.8 0.6 1.8 3.3 - 5.7 3.6 22.4 15.4 - 41.5 - Lights 121 21 105 - 247 87 253 9 - 349 7 21 40 - 68 44 269 182 - 495 1159 % Lights 85.2 95.5 90.5 - 88.2 94.6 96.6 100.0 - 98.6 100.0 98.5 96.8 100 98.5 96.8 96.8 96.8 96.8 96.8 95.2 Mediums 21 1 11 - 33 4 7 0 - 11 0 1 0 1.4 0.0 1.5 3.2 - 2.0 4.5 Mediums 14.8 4.5 9.5 11.8 4.3	Grand Total	142	22	116	2	280	92	262	9	0	363	7	22	40	0	69	44	273	188	3	505	1217
Lights 121 21 105 247 87 253 9 349 7 21 40 68 44 269 182 495 1159 % Lights 85.2 95.5 90.5 - 88.2 94.6 96.6 100.0 - 96.5 100.0 - 98.6 100.0 98.5 96.8 - 98.0 95.2 Mediums 21 1 111 - 33 4 7 0 - 11 0 - 1 0 4 6 - 10 55 % Mediums 14.8 4.5 9.5 - 11.8 4.3 2.7 0.0 - 3.0 0.0 4.5 0.0 1.5 3.2 - 2.0 4.5 Mediums 14.8 4.5 9.5 - 11.8 2.7 0.0 - 0.0 0.0 1.4 0.0 1.5 3.2 - 2.0	Approach %	50.7	7.9	41.4	-	-	25.3	72.2	2.5	-	-	10.1	31.9	58.0	-	-	8.7	54.1	37.2	-	-	-
% Lights 85.2 95.5 90.5 - 88.2 94.6 96.6 100.0 - 98.6 100.0 98.5 100.0 98.5 98.6 - 98.0 95.5 Mediums 21 1 11 - 33 4 7 0 - 11 0 - 1 0 4 6 - 10 55 % Mediums 14.8 4.5 9.5 - 11.8 4.3 2.7 0.0 - 3.0 0.0 4.5 0.0 1.5 3.2 - 2.0 4.5 Articulated Trucks 0 0 0 - 0 <td< td=""><td>Total %</td><td>11.7</td><td>1.8</td><td>9.5</td><td>-</td><td>23.0</td><td>7.6</td><td>21.5</td><td>0.7</td><td>-</td><td>29.8</td><td>0.6</td><td>1.8</td><td>3.3</td><td>-</td><td>5.7</td><td>3.6</td><td>22.4</td><td>15.4</td><td>-</td><td>41.5</td><td>-</td></td<>	Total %	11.7	1.8	9.5	-	23.0	7.6	21.5	0.7	-	29.8	0.6	1.8	3.3	-	5.7	3.6	22.4	15.4	-	41.5	-
Mediums 21 1 11 - 33 4 7 0 - 11 0 1 0 - 1 0 4 6 - 10 55 % Mediums 14.8 4.5 9.5 - 11.8 4.3 2.7 0.0 - 3.0 0.0 4.5 0.0 - 1.4 0.0 1.5 3.2 - 2.0 4.5 Articulated Trucks 0 0 0 - 0 0 0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0	Lights	121	21	105	-	247	87	253	9	-	349	7	21	40	-	68	44	269	182	-	495	1159
% Mediums 14.8 4.5 9.5 - 11.8 4.3 2.7 0.0 - 3.0 0.0 4.5 0.0 - 1.4 0.0 1.5 3.2 - 2.0 4.5 Articulated Trucks 0 0 0 - 0 0 - 0 0 - 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 <td>% Lights</td> <td>85.2</td> <td>95.5</td> <td>90.5</td> <td>-</td> <td>88.2</td> <td>94.6</td> <td>96.6</td> <td>100.0</td> <td>-</td> <td>96.1</td> <td>100.0</td> <td>95.5</td> <td>100.0</td> <td>-</td> <td>98.6</td> <td>100.0</td> <td>98.5</td> <td>96.8</td> <td>-</td> <td>98.0</td> <td>95.2</td>	% Lights	85.2	95.5	90.5	-	88.2	94.6	96.6	100.0	-	96.1	100.0	95.5	100.0	-	98.6	100.0	98.5	96.8	-	98.0	95.2
Articulated Trucks 0 0 0 - 0 0 - 0 0 0 - 0 0 - 0 0 0 - 0 0 - 0 0 - 0 0 0 - 0 0 0 0 0 - 0 0 ^M Articulated Trucks 0.0 </td <td>Mediums</td> <td>21</td> <td>1</td> <td>11</td> <td>-</td> <td>33</td> <td>4</td> <td>7</td> <td>0</td> <td>-</td> <td>11</td> <td>0</td> <td>1</td> <td>0</td> <td>-</td> <td>1</td> <td>0</td> <td>4</td> <td>6</td> <td>-</td> <td>10</td> <td>55</td>	Mediums	21	1	11	-	33	4	7	0	-	11	0	1	0	-	1	0	4	6	-	10	55
Trucks 0 <td>% Mediums</td> <td>14.8</td> <td>4.5</td> <td>9.5</td> <td>-</td> <td>11.8</td> <td>4.3</td> <td>2.7</td> <td>0.0</td> <td>-</td> <td>3.0</td> <td>0.0</td> <td>4.5</td> <td>0.0</td> <td>-</td> <td>1.4</td> <td>0.0</td> <td>1.5</td> <td>3.2</td> <td>-</td> <td>2.0</td> <td>4.5</td>	% Mediums	14.8	4.5	9.5	-	11.8	4.3	2.7	0.0	-	3.0	0.0	4.5	0.0	-	1.4	0.0	1.5	3.2	-	2.0	4.5
Micks 0.0 </td <td></td> <td>0</td> <td>0</td> <td>0</td> <td>-</td> <td>0</td> <td>0</td>		0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
Trucks 0.0<				_							_											
Road 0 0 1 2 0 3 0		0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0
Road Road <th< td=""><td></td><td>0</td><td>0</td><td>0</td><td>-</td><td>0</td><td>1</td><td>2</td><td>0</td><td>-</td><td>3</td><td>0</td><td>0</td><td>0</td><td>-</td><td>0</td><td>0</td><td>0</td><td>0</td><td>-</td><td>0</td><td>3</td></th<>		0	0	0	-	0	1	2	0	-	3	0	0	0	-	0	0	0	0	-	0	3
					-	-		-			-				-						-	
		0.0	0.0	0.0	-	0.0	1.1	0.8	0.0	-	0.8	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.2

Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	0.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-
Pedestrians	-	-	-	2	-	-	-	-	0	-	-	-	-	0	-	-	-	-	3	-	-
% Pedestrians	-	-	-	100.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100.0	-	-

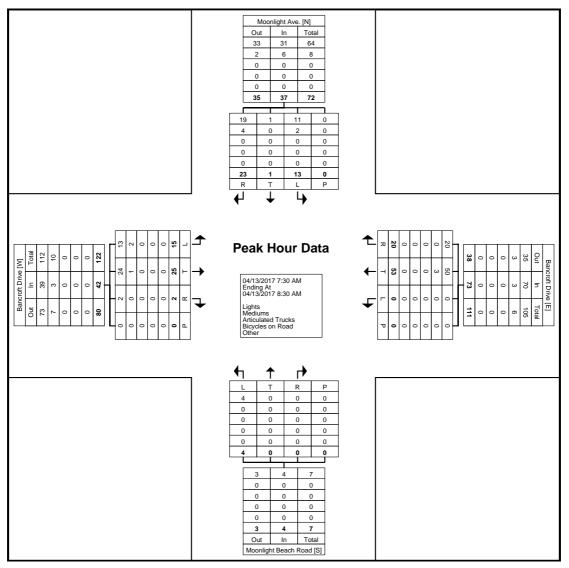
Count Name: Bancroft Drive @ Moonlight Ave. Site Code: Start Date: 04/12/2017 Page No: 3


Turning Movement Data Plot

Turning Movement Peak Hour Data (4:15 PM)

					Turi	ning	IVIOV	eme	ent P	eak	HOU	r Da	เล (4	:15	PIVI)						
		Мо	onlight A	ve.			Ba	ncroft Dr	ive			Moonlig	ght Beac	h Road			Ba	ncroft Dr	ive		
		S	outhbour	nd			v	/estbour	d			N	orthbour	d			E	astboun	d		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
4:15 PM	6	2	6	0	14	0	6	1	0	7	1	2	4	0	7	1	14	12	0	27	55
4:30 PM	8	0	11	0	19	4	11	2	0	17	1	0	1	0	2	0	12	11	0	23	61
4:45 PM	10	0	3	0	13	0	10	0	0	10	1	3	1	0	5	1	14	11	0	26	54
5:00 PM	5	1	12	0	18	4	11	0	0	15	0	0	1	0	1	0	20	16	0	36	70
Total	29	3	32	0	64	8	38	3	0	49	3	5	7	0	15	2	60	50	0	112	240
Approach %	45.3	4.7	50.0	-	-	16.3	77.6	6.1	-	-	20.0	33.3	46.7	-	-	1.8	53.6	44.6	-	-	-
Total %	12.1	1.3	13.3	-	26.7	3.3	15.8	1.3	-	20.4	1.3	2.1	2.9	-	6.3	0.8	25.0	20.8	-	46.7	-
PHF	0.725	0.375	0.667	-	0.842	0.500	0.864	0.375	-	0.721	0.750	0.417	0.438	-	0.536	0.500	0.750	0.781	-	0.778	0.857
Lights	27	3	31	-	61	8	38	3	-	49	3	5	7	-	15	2	60	50	-	112	237
% Lights	93.1	100.0	96.9	-	95.3	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	98.8
Mediums	2	0	1	-	3	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	3
% Mediums	6.9	0.0	3.1	-	4.7	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	1.3
Articulated Trucks	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
% Articulated Trucks	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	•	-						-			-		-							-	

Turning Movement Peak Hour Data Plot (4:15 PM)

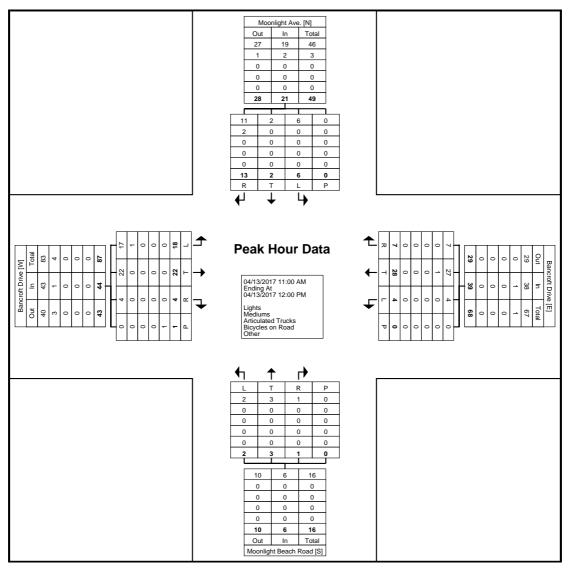


Turning Movement Peak Hour Data (7:30 AM)

					run	iiiig	IVIOV	eme		ear	HOU	i Da	la (7	.307	HIVI)						
		Мо	onlight A	ve.			Ba	ncroft Dr	ive			Moonlig	ght Beac	h Road			Ba	ncroft Dr	ive		
		S	outhbour	nd			v	Vestboun	d			N	orthbour	d			E	astboun	d		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
7:30 AM	7	0	2	0	9	5	17	0	0	22	0	0	1	0	1	0	6	1	0	7	39
7:45 AM	4	0	7	0	11	8	12	0	0	20	0	0	0	0	0	0	9	5	0	14	45
8:00 AM	7	0	3	0	10	3	19	0	0	22	0	0	0	0	0	1	5	2	0	8	40
8:15 AM	5	1	1	0	7	4	5	0	0	9	0	0	3	0	3	1	5	7	0	13	32
Total	23	1	13	0	37	20	53	0	0	73	0	0	4	0	4	2	25	15	0	42	156
Approach %	62.2	2.7	35.1	-	-	27.4	72.6	0.0	-	-	0.0	0.0	100.0	-	-	4.8	59.5	35.7	-	-	-
Total %	14.7	0.6	8.3	-	23.7	12.8	34.0	0.0	-	46.8	0.0	0.0	2.6	-	2.6	1.3	16.0	9.6	-	26.9	-
PHF	0.821	0.250	0.464	-	0.841	0.625	0.697	0.000	-	0.830	0.000	0.000	0.333	-	0.333	0.500	0.694	0.536	-	0.750	0.867
Lights	19	1	11	-	31	20	50	0	-	70	0	0	4	-	4	2	24	13	-	39	144
% Lights	82.6	100.0	84.6	-	83.8	100.0	94.3	-	-	95.9	-	-	100.0	-	100.0	100.0	96.0	86.7	-	92.9	92.3
Mediums	4	0	2	-	6	0	3	0	-	3	0	0	0	-	0	0	1	2	-	3	12
% Mediums	17.4	0.0	15.4	-	16.2	0.0	5.7	-	-	4.1	-	-	0.0	-	0.0	0.0	4.0	13.3	-	7.1	7.7
Articulated Trucks	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
% Articulated Trucks	0.0	0.0	0.0	-	0.0	0.0	0.0	-	-	0.0	-	-	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	0.0	-	0.0	0.0	0.0	-	-	0.0	-	-	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Count Name: Bancroft Drive @ Moonlight Ave. Site Code: Start Date: 04/12/2017 Page No: 7

Turning Movement Peak Hour Data Plot (7:30 AM)

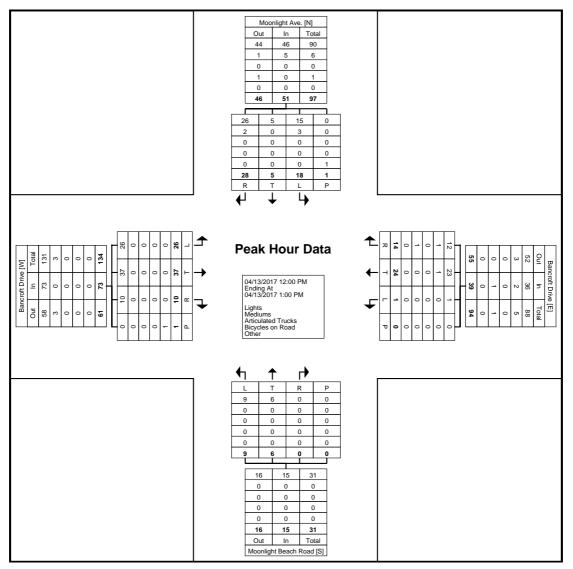


Turning Movement Peak Hour Data (11:00 AM)

				Tum	ing i	VIOV	eme	nt Pe	eak r	JOUL	Dat	a (1	1:00	AIVI)						
	Мо	onlight A	ve.			Ba	ncroft Dr	ive			Moonlig	ght Beac	h Road			Ba	ncroft Dr	ive		
	S	outhbour	nd			v	Vestbour	d			N	orthbour	d			E	astboun	d		
Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
4	0	1	0	5	2	6	0	0	8	0	2	0	0	2	1	4	4	1	9	24
1	2	1	0	4	0	6	2	0	8	1	0	0	0	1	1	10	4	0	15	28
4	0	2	0	6	5	8	0	0	13	0	1	2	0	3	1	1	7	0	9	31
4	0	2	0	6	0	8	2	0	10	0	0	0	0	0	1	7	3	0	11	27
13	2	6	0	21	7	28	4	0	39	1	3	2	0	6	4	22	18	1	44	110
61.9	9.5	28.6	-	-	17.9	71.8	10.3	-	-	16.7	50.0	33.3	-	-	9.1	50.0	40.9	-	-	-
11.8	1.8	5.5	-	19.1	6.4	25.5	3.6	-	35.5	0.9	2.7	1.8	-	5.5	3.6	20.0	16.4	-	40.0	-
0.813	0.250	0.750	-	0.875	0.350	0.875	0.500	-	0.750	0.250	0.375	0.250	-	0.500	1.000	0.550	0.643	-	0.733	0.887
11	2	6	-	19	7	27	4	-	38	1	3	2	-	6	4	22	17	-	43	106
84.6	100.0	100.0	-	90.5	100.0	96.4	100.0	-	97.4	100.0	100.0	100.0	-	100.0	100.0	100.0	94.4	-	97.7	96.4
2	0	0	-	2	0	1	0	-	1	0	0	0	-	0	0	0	1	-	1	4
15.4	0.0	0.0	-	9.5	0.0	3.6	0.0	-	2.6	0.0	0.0	0.0	-	0.0	0.0	0.0	5.6	-	2.3	3.6
0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0
0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0
-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-
-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-	-	-	1	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100.0	-	-
	4 1 4 4 13 61.9 11.8 0.813 11 84.6 2 15.4 0 0.0 0.0 0 0.0 - -	Right Thru 4 0 1 2 4 0 4 0 4 0 4 0 1 2 61.9 9.5 11.8 1.8 0.813 0.250 11 2 84.6 100.0 2 0 15.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Right Thru Left 4 0 1 1 2 1 4 0 2 4 0 2 4 0 2 4 0 2 13 2 6 61.9 9.5 28.6 11.8 1.8 5.5 0.813 0.250 0.750 11 2 6 84.6 100.0 100.0 2 0 0 15.4 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4 0 1 0 1 2 1 0 4 0 2 0 4 0 2 0 4 0 2 0 13 2 6 0 61.9 9.5 28.6 - 11.8 1.8 5.5 - 0.813 0.250 0.750 - 11 2 6 - 84.6 100.0 100.0 - 2 0 0 - 15.4 0.0 0.0 - 0 0 0 - 0.0 0.0 0.0 - 0.0 0.0 0.0 - 0.0 0.0 0.0 - 0.0 0.0 0.0 - 0.0 0.0 0.0 - - - - 0	Hornu light Juit Right Thru Left Peds App. Total 4 0 1 0 5 1 2 1 0 4 4 0 2 0 6 4 0 2 0 6 4 0 2 0 6 4 0 2 0 6 1 2 6 0 21 61.9 9.5 28.6 - 9.1 0.813 0.250 0.750 - 0.875 11 2 6 - 19.1 84.6 100.0 100.0 - 90.5 11 2 6 - 91.6 84.6 100.0 10.0 - 90.5 15.4 0.0 0.0 - 0.0 0.0 0.0 0.0 - 0.0 0.0 0.0	Moonlight Ave. Normlight Ave. Southbourd Right Thru Left Peds App. Total Right 4 0 1 0 5 2 1 2 1 0 4 0 4 0 2 0 6 5 4 0 2 0 6 0 13 2 6 0 21 7 61.9 9.5 28.6 - 19.1 6.4 0.813 0.250 0.750 - 0.875 0.350 11 2 6 - 19.1 6.4 0.813 0.250 0.750 - 0.875 0.350 11 2 6 - 19.1 7 84.6 100.0 10.0 - 9.5 0.0 15.4 0.0 0.0 - 9.5 0.0 0.0	Moonlight Ave. Right Ba Southbourt Right Right Thu Ba Right Thru Left Peds $\stackrel{App.}{Total}$ Right Thru 4 0 1 0 5 2 6 1 2 1 0 4 0 6 4 0 2 0 6 5 8 4 0 2 0 6 9 8 13 2 6 0 21 7 28 61.9 9.5 28.6 - 19.1 6.4 25.5 0.813 0.250 0.750 - 0.875 0.360 0.875 11 2 6 - 19 7 27 84.6 100.0 100.0 - 90.5 100.0 3.61 15.4 0.0 0.0 -	Moonlight Ave. Bailer of Dr Southbourd Right Total Right Thru Left Right Thru Left Peds App. Total Right Thru Left 4 0 1 0 5 2 6 0 1 2 1 0 4 0 6 2 4 0 2 0 6 5 8 0 4 0 2 0 6 0 8 2 13 2 6 0 21 7 28 4 61.9 9.5 28.6 - 17.9 71.8 10.3 11.8 1.8 5.5 - 19.1 6.4 25.5 3.6 0.11 2 6 - 19.7 27 4 84.6 100.0 100.0 - 90.5 <td< td=""><td>Normight Aver. Bancroft Diversion Normight Aver. Network Right Thru Left Peds App. Total Right Thru Left Peds 4 0 1 0 5 2 6 0 0 1 2 1 0 4 0 6 2 0 4 0 2 0 6 5 8 0 0 4 0 2 0 6 0 8 2 0 4 0 2 0 6 17 28 4 0 113 2 6 0 21 7 28 4 0 118 1.8 5.5 - 19.1 6.4 25.5 3.6 - 111 2 6 - 19.7 27 4 - 114 0.0 0</td><td>Moonlight Ave. Southbound Bancroft Drive Right Thru Left Peds App. Total Right Thru Left Peds App. Total 4 0 1 0 5 2 6 0 8 1 2 1 0 4 0 6 2 0 8 4 0 2 0 6 5 8 0 0 13 4 0 2 0 6 5 8 0 0 13 4 0 2 0 6 0 8 2 0 10 113 2 6 0 21 7 28 4 0 39 61.9 9.5 28.6 - 17.9 71.8 10.3 - 0.750 1118 1.8 5.5 - 19.1 6.4 25.5 3.6 - 37.4</td><td>Moonlight Ave. Barcrift Drive Southbourt Right Thru Left Peds App. Total Right Thru Left Peds App. Total Right Thru Left Peds App. Total Right 4 0 1 0 5 2 6 0 0 8 0 4 0 1 0 4 0 6 2 0 8 1 4 0 2 0 6 5 8 0 0 3 0 4 0 2 0 6 0 8 2 0 10 0 113 2 6 0 21 7 28 4 0 35 0.250 1118 1.8 5.5 - 19.1 6.4 25.5</td><td>Moonlight Ave. Bauroft Drive Moonlight Ave. Bauroft Drive Moonlight Ave. Right Thru Left Peds App. Total Right Thru Left Peds App. Total Right Thru 4 0 1 0 5 2 6 0 0 8 0 2 4 0 2 0 6 5 8 0 0 13 0 1 4 0 2 0 6 2 8 0 9 13 0 13 0 1 3 4 0 2 0 1 7 2 8 1 3</td><td>Moonlight Ave Bacrott Drive Moonlight Kear Notonlight Ave Bacrott Drive Moonlight Kear Right Thru Left Peds $App.$ Total Right Thru Left 4 0 1 0 4 0 6 2 0 6 2 0 13 0 1 2 4 0 2 0 6 2 17 7 8 10 3 2</td><td>Moonlight Ave Bancroft Drive Moonlight Ave Number Ave Right Thru Left Peds App Right Thru Left Peds 4 0 1 0 5 2 6 0 0 8 0 2 0 0 4 0 2 0 6 0 8 2 0 10 0 0 0 0 4 0 2 8 0 3 2 0 0 0 0 0 13 2 8 1 3 2 7 18 7<td>Moonlight Av Bancroft Drive Moonlight Beach Road Southbourt Bancroft Drive Moonlight Beach Road Right Thru Left Peds App. Total Right Thru Left Peds App. Total 4 0 1 0 5 2 6 0 8 0 2 0 2 1 2 1 0 4 0 6 2 0 8 1 0 0 1 4 0 2 0 6 5 8 0 13 0 1 2 0 33 4 0 2 0 6 5 8 0 13 0 1 2 0 33 11 2 6 0 21 7 28 4 0 39 1 3 2 0 5 11 1</td><td>Normalization Normation Normation</td><td>Moonlight Ave. Bancroft Drive Moonlight Beach Road Moonlight Beach Road Image: Southout Moonlight Beach Road Moonlight Beach Road Barcroft Drive Moonlight Beach Road Moonlight Max Left Peds Moonlight Beach Road Moonlight Beach Road Moonlight Max Moonlight Max Moonlight Max Moonlight Max Moonlight Max Moonlight Max Moonlight Max Moonlight Max Moonlight Max Moonlight</td><td>Moonlight New Solution of the solution of</td><td>Moonlight Vee Bancrot Drive Moonlight Beach Road Moonlight Beach Road Image Interview Moonlight Beach Road Image Interview Moonlight Beach Road Moonlight Mee Right Thru Left Peds Appr. Total Right Thu Left Peds Appr. Total Total Total Total Total Total<</td><td>Non-night Arr Barcot Drive Mononight Barcot Drive Mononight Barcot Drive Mononight Barcot Non-night Barcot Barcot Drive Non-night Barcot Barcot Drive Mononight Barcot Mononight Barcot Mononight Barcot Mononight Barcot Barcot Drive Thru Mononight Barcot Mononight Barcot Mononight Barcot Mononight Barcot Right Thru Left Peds Apprint Right Thru Left Peds Apprint Apprint Right Thru Left Peds Apprint Peds Apprint 4 0 1 0 5 8 0 0.0 13 0 1 1 4 4 1 4 0 1 7 3 0 11 13 2 6 4 1 4 0 3 1 1 1 0 0 0 0 0</td></td></td<>	Normight Aver. Bancroft Diversion Normight Aver. Network Right Thru Left Peds App. Total Right Thru Left Peds 4 0 1 0 5 2 6 0 0 1 2 1 0 4 0 6 2 0 4 0 2 0 6 5 8 0 0 4 0 2 0 6 0 8 2 0 4 0 2 0 6 17 28 4 0 113 2 6 0 21 7 28 4 0 118 1.8 5.5 - 19.1 6.4 25.5 3.6 - 111 2 6 - 19.7 27 4 - 114 0.0 0	Moonlight Ave. Southbound Bancroft Drive Right Thru Left Peds App. Total Right Thru Left Peds App. Total 4 0 1 0 5 2 6 0 8 1 2 1 0 4 0 6 2 0 8 4 0 2 0 6 5 8 0 0 13 4 0 2 0 6 5 8 0 0 13 4 0 2 0 6 0 8 2 0 10 113 2 6 0 21 7 28 4 0 39 61.9 9.5 28.6 - 17.9 71.8 10.3 - 0.750 1118 1.8 5.5 - 19.1 6.4 25.5 3.6 - 37.4	Moonlight Ave. Barcrift Drive Southbourt Right Thru Left Peds App. Total Right Thru Left Peds App. Total Right Thru Left Peds App. Total Right 4 0 1 0 5 2 6 0 0 8 0 4 0 1 0 4 0 6 2 0 8 1 4 0 2 0 6 5 8 0 0 3 0 4 0 2 0 6 0 8 2 0 10 0 113 2 6 0 21 7 28 4 0 35 0.250 1118 1.8 5.5 - 19.1 6.4 25.5	Moonlight Ave. Bauroft Drive Moonlight Ave. Bauroft Drive Moonlight Ave. Right Thru Left Peds App. Total Right Thru Left Peds App. Total Right Thru 4 0 1 0 5 2 6 0 0 8 0 2 4 0 2 0 6 5 8 0 0 13 0 1 4 0 2 0 6 2 8 0 9 13 0 13 0 1 3 4 0 2 0 1 7 2 8 1 3	Moonlight Ave Bacrott Drive Moonlight Kear Notonlight Ave Bacrott Drive Moonlight Kear Right Thru Left Peds $App.$ Total Right Thru Left 4 0 1 0 4 0 6 2 0 6 2 0 13 0 1 2 4 0 2 0 6 2 17 7 8 10 3 2	Moonlight Ave Bancroft Drive Moonlight Ave Number Ave Right Thru Left Peds App Right Thru Left Peds 4 0 1 0 5 2 6 0 0 8 0 2 0 0 4 0 2 0 6 0 8 2 0 10 0 0 0 0 4 0 2 8 0 3 2 0 0 0 0 0 13 2 8 1 3 2 7 18 7 <td>Moonlight Av Bancroft Drive Moonlight Beach Road Southbourt Bancroft Drive Moonlight Beach Road Right Thru Left Peds App. Total Right Thru Left Peds App. Total 4 0 1 0 5 2 6 0 8 0 2 0 2 1 2 1 0 4 0 6 2 0 8 1 0 0 1 4 0 2 0 6 5 8 0 13 0 1 2 0 33 4 0 2 0 6 5 8 0 13 0 1 2 0 33 11 2 6 0 21 7 28 4 0 39 1 3 2 0 5 11 1</td> <td>Normalization Normation Normation</td> <td>Moonlight Ave. Bancroft Drive Moonlight Beach Road Moonlight Beach Road Image: Southout Moonlight Beach Road Moonlight Beach Road Barcroft Drive Moonlight Beach Road Moonlight Max Left Peds Moonlight Beach Road Moonlight Beach Road Moonlight Max Moonlight Max Moonlight Max Moonlight Max Moonlight Max Moonlight Max Moonlight Max Moonlight Max Moonlight Max Moonlight</td> <td>Moonlight New Solution of the solution of</td> <td>Moonlight Vee Bancrot Drive Moonlight Beach Road Moonlight Beach Road Image Interview Moonlight Beach Road Image Interview Moonlight Beach Road Moonlight Mee Right Thru Left Peds Appr. Total Right Thu Left Peds Appr. Total Total Total Total Total Total<</td> <td>Non-night Arr Barcot Drive Mononight Barcot Drive Mononight Barcot Drive Mononight Barcot Non-night Barcot Barcot Drive Non-night Barcot Barcot Drive Mononight Barcot Mononight Barcot Mononight Barcot Mononight Barcot Barcot Drive Thru Mononight Barcot Mononight Barcot Mononight Barcot Mononight Barcot Right Thru Left Peds Apprint Right Thru Left Peds Apprint Apprint Right Thru Left Peds Apprint Peds Apprint 4 0 1 0 5 8 0 0.0 13 0 1 1 4 4 1 4 0 1 7 3 0 11 13 2 6 4 1 4 0 3 1 1 1 0 0 0 0 0</td>	Moonlight Av Bancroft Drive Moonlight Beach Road Southbourt Bancroft Drive Moonlight Beach Road Right Thru Left Peds App. Total Right Thru Left Peds App. Total 4 0 1 0 5 2 6 0 8 0 2 0 2 1 2 1 0 4 0 6 2 0 8 1 0 0 1 4 0 2 0 6 5 8 0 13 0 1 2 0 33 4 0 2 0 6 5 8 0 13 0 1 2 0 33 11 2 6 0 21 7 28 4 0 39 1 3 2 0 5 11 1	Normalization Normation Normation	Moonlight Ave. Bancroft Drive Moonlight Beach Road Moonlight Beach Road Image: Southout Moonlight Beach Road Moonlight Beach Road Barcroft Drive Moonlight Beach Road Moonlight Max Left Peds Moonlight Beach Road Moonlight Beach Road Moonlight Max Moonlight Max Moonlight Max Moonlight Max Moonlight Max Moonlight Max Moonlight Max Moonlight Max Moonlight Max Moonlight	Moonlight New Solution of the solution of	Moonlight Vee Bancrot Drive Moonlight Beach Road Moonlight Beach Road Image Interview Moonlight Beach Road Image Interview Moonlight Beach Road Moonlight Mee Right Thru Left Peds Appr. Total Right Thu Left Peds Appr. Total Total Total Total Total Total<	Non-night Arr Barcot Drive Mononight Barcot Drive Mononight Barcot Drive Mononight Barcot Non-night Barcot Barcot Drive Non-night Barcot Barcot Drive Mononight Barcot Mononight Barcot Mononight Barcot Mononight Barcot Barcot Drive Thru Mononight Barcot Mononight Barcot Mononight Barcot Mononight Barcot Right Thru Left Peds Apprint Right Thru Left Peds Apprint Apprint Right Thru Left Peds Apprint Peds Apprint 4 0 1 0 5 8 0 0.0 13 0 1 1 4 4 1 4 0 1 7 3 0 11 13 2 6 4 1 4 0 3 1 1 1 0 0 0 0 0

Count Name: Bancroft Drive @ Moonlight Ave. Site Code: Start Date: 04/12/2017 Page No: 9

Turning Movement Peak Hour Data Plot (11:00 AM)



Turning Movement Peak Hour Data (12:00 PM)

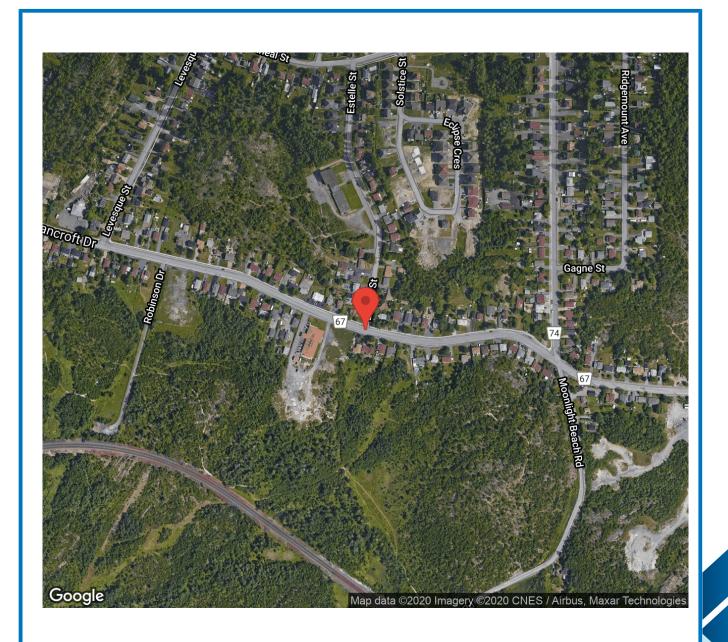
Moonlight lear-ord Drive Moonlight lear-ord Drive Moonlight lear-Rad Bar-ord Drive Bar-ord Drive Bar-ord Drive Bar-ord Drive Bar-ord Drive Bar-ord Drive Start Time Right Thru Left Peds Total Pape Pape Total Pape Total Pape Total Pape Total Pape Pape Pape Pape Pape Pape						Turr	ing i	VIOV	eme	nt Pe	еак і	Hour	Dat	a (12	2:00	PIVI)						
Start Time Right Thru Left Peds App. Total Right<			Мо	onlight A	ve.			Ba	Incroft Dr	ive			Moonlig	ght Beac	h Road			Ba	ncroft Dr	ive		
Right Thru Left Peds Total Right </td <td></td> <td></td> <td>S</td> <td>outhbour</td> <td>nd</td> <td></td> <td></td> <td>v</td> <td>Vestbour</td> <td>d</td> <td></td> <td></td> <td>N</td> <td>orthbour</td> <td>nd</td> <td></td> <td></td> <td>E</td> <td>astboun</td> <td>d</td> <td></td> <td></td>			S	outhbour	nd			v	Vestbour	d			N	orthbour	nd			E	astboun	d		
12:15 PM 5 1 2 0 8 2 6 0 0 8 0 1 1 0 2 2 11 3 0 16 34 12:30 PM 6 2 4 0 12 5 9 0 0 14 0 2 3 0 5 4 10 5 0 19 50 12:45 PM 10 1 4 1 15 5 4 1 0 10 0 3 3 0 6 1 6 10 0 17 48 Approach % 54.9 9.8 35.3 - 35.9 61.5 2.6 - 0.0 40.0 60.0 - - 1.7 7.3 7.8 7.3 7.8 7.9 13.5 0.6 - 21.9 0.0 3.4 5.1 - 8.4 5.6 2.08 14.0 - - - - 1.0 3.7 2.6 - 7.3 17.0 17.0 <td>Start Time</td> <td>Right</td> <td>Thru</td> <td>Left</td> <td>Peds</td> <td>App. Total</td> <td></td>	Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	
12:30 PM 6 2 4 0 12 5 9 0 0 14 0 2 3 0 5 4 10 5 0 19 50 12:45 PM 10 1 4 1 15 5 4 1 0 39 0 6 9 0 15 10 37 26 1 73 178 Approach % 54.9 9.8 35.3 - 35.9 61.5 2.6 - 0.0 40.0 60.0 - - 13.7 50.7 35.6 - 10 37	12:00 PM	7	1	8	0	16	2	5	0	0	7	0	0	2	0	2	3	10	8	1	21	46
12:45 PM 10 1 4 1 15 5 4 1 0 10 0 3 3 0 6 1 6 10 0 17 48 Total 28 5 18 1 51 14 24 1 0 39 0 6 9 0 15 10 37 26 1 73 178 Approach % 54.9 9.8 35.3 - - 35.9 61.5 2.6 - 0.0 3.4 5.1 - 13.7 50.7 35.6 - - - - - - - - - - - - - - - 13.7 50.7 35.6 - - - - - - - 13.7 50.7 35.6 - - - - - - 10 37 26 - 7.3 170 9.90 9.90 9.80 9.90 9.23 - 100.0 100.0 100.0<	12:15 PM	5	1	2	0	8	2	6	0	0	8	0	1	1	0	2	2	11	3	0	16	34
Total 28 5 18 1 51 14 24 1 0 39 0 6 9 0 15 10 37 26 1 73 178 Approach % 54.9 9.8 35.3 - 35.9 61.5 2.6 - 0.0 40.0 60.0 - 13.7 50.7 35.6 - - . Total % 15.7 2.8 10.1 - 28.7 7.9 13.5 0.6 - 21.9 0.0 3.4 5.1 - 8.4 5.6 20.8 14.6 - 41.0 - PHF 0.700 0.667 0.250 - 0.625 0.625 0.625 0.625 0.814 0.660 - 73 170 Ughts 92.9 100.0 83.3 - 90.2 85.7 95.8 100.0 - 0 0 0 0 0 0 0	12:30 PM	6	2	4	0	12	5	9	0	0	14	0	2	3	0	5	4	10	5	0	19	50
Approach % 54.9 9.8 35.3 - 35.9 61.5 2.6 - 0.0 40.0 60.0 - 13.7 50.7 35.6 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <t< td=""><td>12:45 PM</td><td>10</td><td>1</td><td>4</td><td>1</td><td>15</td><td>5</td><td>4</td><td>1</td><td>0</td><td>10</td><td>0</td><td>3</td><td>3</td><td>0</td><td>6</td><td>1</td><td>6</td><td>10</td><td>0</td><td>17</td><td>48</td></t<>	12:45 PM	10	1	4	1	15	5	4	1	0	10	0	3	3	0	6	1	6	10	0	17	48
Total % 15.7 2.8 10.1 - 28.7 7.9 13.5 0.6 - 21.9 0.0 3.4 5.1 - 8.4 5.6 20.8 14.6 - 41.0 - PHF 0.700 0.625 0.563 - 0.797 0.700 0.667 0.250 - 0.696 0.000 0.500 0.750 - 0.625 0.625 0.841 0.650 - 0.896 0.000 0.500 0.750 - 0.625 0.625 0.841 0.650 - 0.889 0.890 Lights 92.9 100.0 83.3 - 90.2 85.7 95.8 100.0 - 100.0	Total	28	5	18	1	51	14	24	1	0	39	0	6	9	0	15	10	37	26	1	73	178
PHF 0.700 0.625 0.563 - 0.797 0.700 0.667 0.250 - 0.696 0.000 0.750 - 0.625 0.625 0.841 0.650 - 0.889 0.890 Lights 26 5 15 - 46 12 23 1 - 36 0 6 9 - 15 10 37 26 - 73 170 % Lights 92.9 100.0 83.3 - 90.2 85.7 95.8 100.0 - 20 0 0 - 0	Approach %	54.9	9.8	35.3	-	-	35.9	61.5	2.6	-	-	0.0	40.0	60.0	-	-	13.7	50.7	35.6	-	-	-
Lights 26 5 15 - 46 12 23 1 - 36 0 6 9 - 15 10 37 26 - 73 170 % Lights 92.9 100.0 83.3 - 90.2 85.7 95.8 100.0 - 92.3 - 100.0	Total %	15.7	2.8	10.1	-	28.7	7.9	13.5	0.6	-	21.9	0.0	3.4	5.1	-	8.4	5.6	20.8	14.6	-	41.0	-
% Lights 92.9 100.0 83.3 - 90.2 85.7 95.8 100.0 - 100.0 <td>PHF</td> <td>0.700</td> <td>0.625</td> <td>0.563</td> <td>-</td> <td>0.797</td> <td>0.700</td> <td>0.667</td> <td>0.250</td> <td>-</td> <td>0.696</td> <td>0.000</td> <td>0.500</td> <td>0.750</td> <td>-</td> <td>0.625</td> <td>0.625</td> <td>0.841</td> <td>0.650</td> <td>-</td> <td>0.869</td> <td>0.890</td>	PHF	0.700	0.625	0.563	-	0.797	0.700	0.667	0.250	-	0.696	0.000	0.500	0.750	-	0.625	0.625	0.841	0.650	-	0.869	0.890
Mediums 2 0 3 - 5 1 1 0 - 2 0 0 0 - 0 7 % Mediums 7.1 0.0 16.7 - 9.8 7.1 4.2 0.0 - 5.1 - 0.0 0.0 - 0.0	Lights	26	5	15	-	46	12	23	1	-	36	0	6	9	-	15	10	37	26	-	73	170
% Mediums 7.1 0.0 16.7 - 9.8 7.1 4.2 0.0 - 5.1 - 0.0 <td>% Lights</td> <td>92.9</td> <td>100.0</td> <td>83.3</td> <td>-</td> <td>90.2</td> <td>85.7</td> <td>95.8</td> <td>100.0</td> <td>-</td> <td>92.3</td> <td>-</td> <td>100.0</td> <td>100.0</td> <td>-</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>-</td> <td>100.0</td> <td>95.5</td>	% Lights	92.9	100.0	83.3	-	90.2	85.7	95.8	100.0	-	92.3	-	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	95.5
Articulated Trucks 0 0 0 - 0	Mediums	2	0	3	-	5	1	1	0	-	2	0	0	0	-	0	0	0	0	-	0	7
Trucks 0 <td>% Mediums</td> <td>7.1</td> <td>0.0</td> <td>16.7</td> <td>-</td> <td>9.8</td> <td>7.1</td> <td>4.2</td> <td>0.0</td> <td>-</td> <td>5.1</td> <td>-</td> <td>0.0</td> <td>0.0</td> <td>-</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>-</td> <td>0.0</td> <td>3.9</td>	% Mediums	7.1	0.0	16.7	-	9.8	7.1	4.2	0.0	-	5.1	-	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	3.9
Trucks 0.0 <t< td=""><td></td><td>0</td><td>0</td><td>0</td><td>-</td><td>0</td><td>0</td><td>0</td><td>0</td><td>-</td><td>0</td><td>0</td><td>0</td><td>0</td><td>-</td><td>0</td><td>0</td><td>0</td><td>0</td><td>-</td><td>0</td><td>0</td></t<>		0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
Road 0 0 0 0 1 0 0 1 0 1 0		0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	-	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0
Road 0.0 <td>Bicycles on Road</td> <td>0</td> <td>0</td> <td>0</td> <td>-</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>-</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>-</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>-</td> <td>0</td> <td>1</td>	Bicycles on Road	0	0	0	-	0	1	0	0	-	1	0	0	0	-	0	0	0	0	-	0	1
Crosswalk - - 0 - - 0 - - 0 -	% Bicycles on Road	0.0	0.0	0.0	-	0.0	7.1	0.0	0.0	-	2.6	-	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.6
Crosswalk -	Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
		-	-	-	0.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-
% Pedestrians - - 100.0 - - - - - 100.0 - - - 100.0 - - - 100.0 - - 100.0 - - - 100.0 - - 100.0 - - - 100.0 - - 100.0 - - 100.0 - 100.0 - 100.0 - - 100.0 -	Pedestrians	-	-	-	1	-	-	-	-	0	-	-	-	-	0	-	-	-	-	1	-	-
	% Pedestrians	-	-	-	100.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100.0	-	-

Count Name: Bancroft Drive @ Moonlight Ave. Site Code: Start Date: 04/12/2017 Page No: 11

Turning Movement Peak Hour Data Plot (12:00 PM)

Count Name: Bancroft Drive @ Moonlight Ave. Site Code: Start Date: 04/12/2017 Page No: 12

Project #20-191 - JD Engineering Inc


Intersection Count Report

Intersection:	Bancroft Dr & Estelle St
Municipality:	Sudbury
Count Date:	Nov 18, 2020
Site Code:	2019100001
Count Categories:	Cars, Trucks, Bicycles, Pedestrians
Count Period:	07:00-09:00, 16:00-19:00
Weather:	Clear

Traffic Count Map

Intersection:	Bancroft Dr & Estelle St
Municipality:	Sudbury
Count Date:	Nov 18, 2020

Traffic Count Summary

Intersection:	Bancroft Dr & Estelle St
Municipality:	Sudbury
Count Date:	Nov 18, 2020

Estelle St - Traffic Summary

		North	Appr	oach T	otals		South Approach Totals								
		Include	s Cars, 1	Frucks, Bi	cycles		Includes Cars, Trucks, Bicycles								
Hour	Left	Thru	Right	U-Turn	Total	Peds	Left	Thru	Right	U-Turn	Total	Peds			
07:00 - 08:00	1	0	4	0	5	0	0	0	0	0	0	0			
08:00 - 09:00	0	0	1	0	1	0	0	0	0	0	0	0			
					BREAK										
16:00 - 17:00	1	0	0	0	1	0	0	0	0	0	0	0			
17:00 - 18:00	2	0	1	0	3	0	0	0	0	0	0	0			
18:00 - 19:00	1	0	3	0	4	0	0	0	0	0	0	0			
GRAND TOTAL	5	0	9	0	14	0	0	0	0	0	0	0			

.

. . .

Traffic Count Summary

Intersection:	Bancroft Dr & Estelle St
Municipality:	Sudbury
Count Date:	Nov 18, 2020

Bancroft Dr - Traffic Summary

		East	Appro	ach To	tals			West Approach Totals								
		Include	s Cars, T	Trucks, Bi	cycles	Includes Cars, Trucks, Bicycles										
Hour	Left	Thru	Right	U-Turn	Total	Peds	Left	Thru	Right	U-Turn	Total	Peds				
07:00 - 08:00	0	71	4	0	75	0	2	35	0	0	37	2				
08:00 - 09:00	0	65	4	0	69	0	1	42	0	0	43	0				
					BREAK											
16:00 - 17:00	0	58	4	0	62	0	5	112	0	0	117	0				
17:00 - 18:00	0	41	3	0	44	1	8	65	0	0	73	0				
18:00 - 19:00	0	27	1	0	28	0	1	36	0	0	37	0				
GRAND TOTAL	0	262	16	0	278	1	17	290	0	0	307	2				

Bancroft Dr & Estelle St
Sudbury
Nov 18, 2020

North Approach - Estelle St

			Cars				1	Frucks				B	icycles			
Start Time	-	1		J	Total	- 有	1	-	1	Total	- 🖷	1	-	1	Total	Total Peds
07:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15	0	0	2	0	2	0	0	0	0	0	0	0	0	0	0	0
07:30	0	0	1	0	1	1	0	0	0	1	0	0	0	0	0	0
07:45	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0
08:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0
08:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SUBTOTAL	0	0	5	0	5	1	0	0	0	1	0	0	0	0	0	0

Bancroft Dr & Estelle St
Sudbury
Nov 18, 2020

North Approach - Estelle St

			Cars				Т	rucks				В	icycles			
Start Time	•	1		J	Total	-	1		J	Total	-	1		J	Total	Total Peds
16:00	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
16:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:00	2	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0
17:15	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0
17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:00	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
18:15	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0
18:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:45	0	0	1	0	1	0	0	1	0	1	0	0	0	0	0	0
SUBTOTAL	4	0	3	0	7	0	0	1	0	1	0	0	0	0	0	0
GRAND TOTAL	4	0	8	0	12	1	0	1	0	2	0	0	0	0	0	0

Bancroft Dr & Estelle St
Sudbury
Nov 18, 2020

East Approach - Bancroft Dr

		-	Cars				T	rucks				Bi	cycles			
Start Time	-	1		1	Total	-	1		1	Total	-	1		9	Total	Total Peds
07:00	0	13	0	0	13	0	3	0	0	3	0	0	0	0	0	0
07:15	0	17	0	0	17	0	0	2	0	2	0	0	0	0	0	0
07:30	0	19	0	0	19	0	2	0	0	2	0	0	0	0	0	0
07:45	0	17	2	0	19	0	0	0	0	0	0	0	0	0	0	0
08:00	0	19	0	0	19	0	3	1	0	4	0	0	0	0	0	0
08:15	0	11	0	0	11	0	1	0	0	1	0	0	0	0	0	0
08:30	0	18	2	0	20	0	1	0	0	1	0	0	0	0	0	0
08:45	0	12	1	0	13	0	0	0	0	0	0	0	0	0	0	0
SUBTOTAL	0	126	5	0	131	0	10	3	0	13	0	0	0	0	0	0

Bancroft Dr & Estelle St
Sudbury
Nov 18, 2020

East Approach - Bancroft Dr

			Cars				T	rucks				Bi	cycles			
Start Time	•	1		J	Total	•	1		J	Total	•	1		J	Total	Total Peds
16:00	0	15	0	0	15	0	2	0	0	2	0	0	0	0	0	0
16:15	0	13	1	0	14	0	0	0	0	0	0	0	0	0	0	0
16:30	0	21	1	0	22	0	1	0	0	1	0	0	0	0	0	0
16:45	0	6	2	0	8	0	0	0	0	0	0	0	0	0	0	0
17:00	0	12	1	0	13	0	1	0	0	1	0	0	0	0	0	0
17:15	0	7	1	0	8	0	0	0	0	0	0	0	0	0	0	0
17:30	0	10	1	0	11	0	2	0	0	2	0	0	0	0	0	0
17:45	0	9	0	0	9	0	0	0	0	0	0	0	0	0	0	1
18:00	0	5	0	0	5	0	1	0	0	1	0	0	0	0	0	0
18:15	0	7	1	0	8	0	0	0	0	0	0	0	0	0	0	0
18:30	0	8	0	0	8	0	0	0	0	0	0	0	0	0	0	0
18:45	0	6	0	0	6	0	0	0	0	0	0	0	0	0	0	0
SUBTOTAL	0	119	8	0	127	0	7	0	0	7	0	0	0	0	0	1
GRAND TOTAL	0	245	13	0	258	0	17	3	0	20	0	0	0	0	0	1

Bancroft Dr & Estelle St
Sudbury
Nov 18, 2020

West Approach - Bancroft Dr

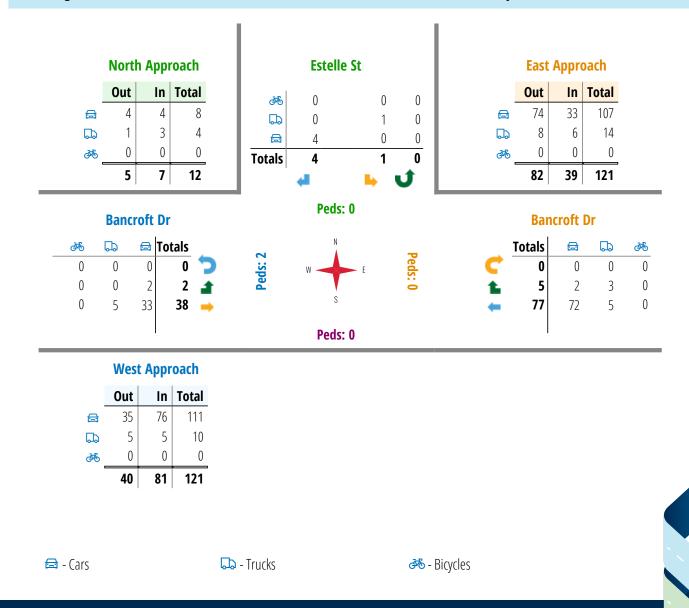
			Cars				-	Trucks				В	icycles			
Start Time	-	1		1	Total	-	1	-	1	Total	Ŧ	1	-	1	Total	Total Peds
07:00	0	7	0	0	7	0	1	0	0	1	0	0	0	0	0	0
07:15	0	9	0	0	9	0	1	0	0	1	0	0	0	0	0	2
07:30	2	4	0	0	6	0	1	0	0	1	0	0	0	0	0	0
07:45	0	10	0	0	10	0	2	0	0	2	0	0	0	0	0	0
08:00	0	10	0	0	10	0	1	0	0	1	0	0	0	0	0	0
08:15	0	10	0	0	10	0	2	0	0	2	0	0	0	0	0	0
08:30	1	8	0	0	9	0	1	0	0	1	0	0	0	0	0	0
08:45	0	10	0	0	10	0	0	0	0	0	0	0	0	0	0	0
SUBTOTAL	3	68	0	0	71	0	9	0	0	9	0	0	0	0	0	2

Bancroft Dr & Estelle St
Sudbury
Nov 18, 2020

West Approach - Bancroft Dr

			Cars				1	rucks				В	licycles			
Start Time	•	1		J	Total	-	1		J	Total	-	1	-	1	Total	Total Peds
16:00	0	25	0	0	25	0	0	0	0	0	0	0	0	0	0	0
16:15	1	32	0	0	33	0	0	0	0	0	0	0	0	0	0	0
16:30	2	23	0	0	25	0	0	0	0	0	0	0	0	0	0	0
16:45	2	31	0	0	33	0	1	0	0	1	0	0	0	0	0	0
17:00	2	18	0	0	20	0	0	0	0	0	0	0	0	0	0	0
17:15	3	16	0	0	19	0	0	0	0	0	0	0	0	0	0	0
17:30	3	17	0	0	20	0	0	0	0	0	0	0	0	0	0	0
17:45	0	14	0	0	14	0	0	0	0	0	0	0	0	0	0	0
18:00	0	13	0	0	13	0	0	0	0	0	1	0	0	0	1	0
18:15	0	7	0	0	7	0	0	0	0	0	0	0	0	0	0	0
18:30	0	10	0	0	10	0	0	0	0	0	0	0	0	0	0	0
18:45	0	6	0	0	6	0	0	0	0	0	0	0	0	0	0	0
SUBTOTAL	13	212	0	0	225	0	1	0	0	1	1	0	0	0	1	0
GRAND TOTAL	16	280	0	0	296	0	10	0	0	10	1	0	0	0	1	2

Peak Hour Diagram


Specified Pe	eriod	One Hour P	eak
From:	07:00:00	From:	07:15:00
To:	09:00:00	To:	08:15:00

Intersection:	Bancroft Dr & Estelle St
Site ID:	2019100001
Count Date:	Nov 18, 2020

Weather conditions:

** Unsignalized Intersection **

Major Road: Estelle St runs N/S

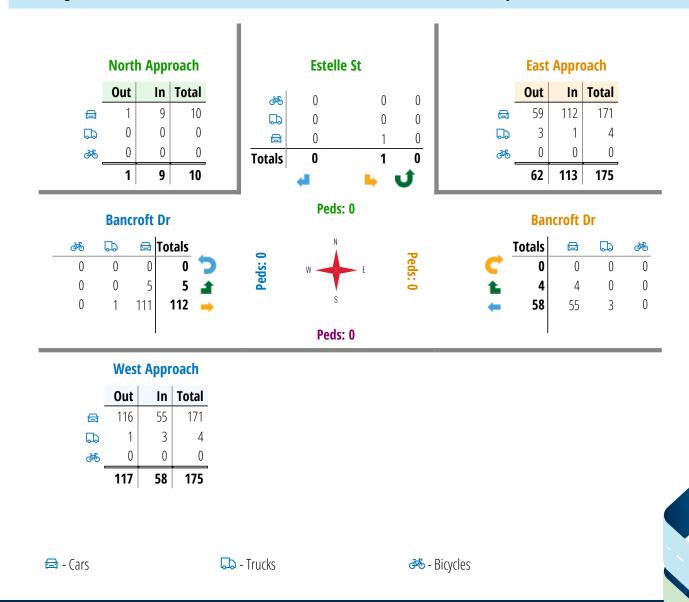
Peak Hour Summary

Intersection:	Bancroft Dr & Estelle St
Count Date:	Nov 18, 2020
Period:	07:00 - 09:00

Peak Hour Data (07:15 - 08:15)

		ļ	North A Este	lle St	:h			South Approach					East Approach Bancroft Dr							West Approach Bancroft Dr						
Start Time	•	t		J	Peds	Total	•	1		J	Peds	Total	Ŧ	1		J	Peds	Total	•	1		J	Peds	Total	Vehicl es	
07:15	0		2	0	0	2					0			17	2	0	0	19	0	10		0	2	10	31	
07:30	1		1	0	0	2					0			21	0	0	0	21	2	5		0	0	7	30	
07:45	0		1	0	0	1					0			17	2	0	0	19	0	12		0	0	12	32	
08:00	0		0	0	0	0					0			22	1	0	0	23	0	11		0	0	11	34	
Grand Total	1		4	0	0	5					0	0		77	5	0	0	82	2	38		0	2	40	127	
Approach %	20		80	0		-						-		93.9	6.1	0		-	5	95		0		-		
Totals %	0.8		3.1	0		3.9						0		60.6	3.9	0		64.6	1.6	29.9		0		31.5		
PHF	0.25		0.5	0		0.63						0		0.88	0.63	0		0.89	0.25	0.79		0		0.83	0.93	
Cars	0		4	0		4						0		72	2	0		74	2	33		0		35	113	
% Cars	0		100	0		80						0		93.5	40	0		90.2	100	86.8		0		87.5	89	
Trucks	1		0	0		1						0		5	3	0		8	0	5		0		5	14	
% Trucks	100		0	0		20						0		6.5	60	0		9.8	0	13.2		0		12.5	11	
Bicycles	0		0	0		0						0		0	0	0		0	0	0		0		0	0	
% Bicycles	0		0	0		0						0		0	0	0		0	0	0		0		0	0	
Peds					0	-					0	-					0	-					2	-	2	
% Peds					0	-					0	-					0	-					100	-		

Peak Hour Diagram


Specified Pe	riod	One Hour Peak						
From:	16:00:00	From:	16:00:00					
To:	19:00:00	To:	17:00:00					

Intersection:	Bancroft Dr & Estelle St
Site ID:	2019100001
Count Date:	Nov 18, 2020

Weather conditions:

** Unsignalized Intersection **

Major Road: Estelle St runs N/S

Comments

Peak Hour Summary

Intersection:	Bancroft Dr & Estelle St
Count Date:	Nov 18, 2020
Period:	16:00 - 19:00

Peak Hour Data (16:00 - 17:00)

		North Approach Estelle St					South Approach				East Approach Bancroft Dr				West Approach Bancroft Dr					Total Vehicl					
Start Time	•	t		J	Peds	Total	•	1		J	Peds	Total	Ŧ	1		J	Peds	Total	•	1		J	Peds	Total	es
16:00	1		0	0	0	1					0			17	0	0	0	17	0	25		0	0	25	43
16:15	0		0	0	0	0					0			13	1	0	0	14	1	32		0	0	33	47
16:30	0		0	0	0	0					0			22	1	0	0	23	2	23		0	0	25	48
16:45	0		0	0	0	0					0			6	2	0	0	8	2	32		0	0	34	42
Grand Total	1		0	0	0	1					0	0		58	4	0	0	62	5	112		0	0	117	180
Approach %	100		0	0		-						-		93.5	6.5	0		-	4.3	95.7		0		-	
Totals %	0.6		0	0		0.6						0		32.2	2.2	0		34.4	2.8	62.2		0		65	
PHF	0.25		0	0		0.25						0		0.66	0.5	0		0.67	0.63	0.88		0		0.86	0.94
Cars	1		0	0		1						0		55	4	0		59	5	111		0		116	176
% Cars	100		0	0		100						0		94.8	100	0		95.2	100	99.1		0		99.1	97.8
Trucks	0		0	0		0						0		3	0	0		3	0	1		0		1	4
% Trucks	0		0	0		0						0		5.2	0	0		4.8	0	0.9		0		0.9	2.2
Bicycles	0		0	0		0						0		0	0	0		0	0	0		0		0	0
% Bicycles	0		0	0		0						0		0	0	0		0	0	0		0		0	0
Peds					0	-					0	-					0	-					0	-	0
% Peds					0	-					0	-					0	-					0	-	

Estelle Street Development Tulloch Engineering Inc. JDE-20112 Date: March 5th, 2021

Appendix D – Synchro Analysis Output – Existing Traffic Volumes

Estelle Street Development 1: Levesque St & Kingsway

	٦	-	\mathbf{r}	4	+	•	1	t	ŧ
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBT
Lane Configurations	ሻ	††	1	۲	††	1	۲	¢Î	\$
Traffic Volume (vph)	1	867	201	82	653	1	80	0	0
Future Volume (vph)	1	867	201	82	653	1	80	0	0
Lane Group Flow (vph)	1	922	214	87	695	1	85	132	1
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	Perm	NA	NA
Protected Phases		4		3	8			2	6
Permitted Phases	4		4	8		8	2		
Detector Phase	4	4	4	3	8	8	2	2	6
Switch Phase									
Vinimum Initial (s)	30.0	30.0	30.0	5.0	30.0	30.0	8.0	8.0	8.0
Minimum Split (s)	37.9	37.9	37.9	9.0	37.9	37.9	27.8	27.8	27.8
Total Split (s)	67.9	67.9	67.9	16.0	83.9	83.9	31.8	31.8	31.8
Total Split (%)	58.7%	58.7%	58.7%	13.8%	72.5%	72.5%	27.5%	27.5%	27.5%
Yellow Time (s)	5.9	5.9	5.9	3.0	5.9	5.9	3.6	3.6	3.6
All-Red Time (s)	2.0	2.0	2.0	1.0	2.0	2.0	3.2	3.2	3.2
_ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Fotal Lost Time (s)	7.9	7.9	7.9	4.0	7.9	7.9	6.8	6.8	6.8
_ead/Lag	Lag	Lag	Lag	Lead					
_ead-Lag Optimize?	Yes	Yes	Yes	Yes					
Recall Mode	Max	Max	Max	None	Max	Max	None	None	None
/c Ratio	0.00	0.39	0.19	0.19	0.27	0.00	0.53	0.32	0.00
Control Delay	8.0	9.5	1.7	3.9	4.7	0.0	55.3	2.0	0.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	8.0	9.5	1.7	3.9	4.7	0.0	55.3	2.0	0.0
Queue Length 50th (m)	0.1	44.5	0.0	3.3	20.3	0.0	17.0	0.0	0.0
Queue Length 95th (m)		68.5	9.3	8.2	33.3	0.0	33.0	0.0	0.0
nternal Link Dist (m)		516.5			440.7			737.0	303.0
Furn Bay Length (m)	59.0		94.0	30.0		1.0	13.0		
Base Capacity (vph)	488	2349	1122	529	2575	1218	341	576	601
Starvation Cap Reductr	0 ו	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.00	0.39	0.19	0.16	0.27	0.00	0.25	0.23	0.00
ntersection Summary									
Cycle Length: 115.7									
Actuated Cycle Length:	105.4								
Natural Cycle: 75									
Control Type: Semi Act	-Uncoor	d							
Splits and Phases: 1	: Leveso	que St 8	k Kingsv	vay					
				1 A .					

1 Ø2	Ø3	Ø4	
31.8 s	16 s	67.9 s	
↓ Ø6	₩ Ø8		
31.8 s	83.9 s		

Estelle Street Development 1: Levesque St & Kingsway

	٦	-	\mathbf{r}	4	-	*	1	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	<u></u>	1	<u>۲</u>	<u></u>	1	۲	eî 👘			\$	
Traffic Volume (vph)	1	867	201	82	653	1	80	0	124	0	0	1
Future Volume (vph)	1	867	201	82	653	1	80	0	124	0	0	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.9	7.9	7.9	4.0	7.9	7.9	6.8	6.8			6.8	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00			1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.85			0.86	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00			1.00	
Satd. Flow (prot)	1805	3539	1583	1736	3438	1615	1805	1568			1644	
Flt Permitted	0.39	1.00	1.00	0.27	1.00	1.00	0.76	1.00			1.00	
Satd. Flow (perm)	736	3539	1583	494	3438	1615	1439	1568			1644	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	1	922	214	87	695	1	85	0	132	0	0	1
RTOR Reduction (vph)	0	0	73	0	0	0	0	117	0	0	1	0
Lane Group Flow (vph)	1	922	141	87	695	1	85	15	0	0	0	0
Heavy Vehicles (%)	0%	2%	2%	4%	5%	0%	0%	0%	3%	0%	0%	0%
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	Perm	NA			NA	
Protected Phases		4		3	8			2			6	
Permitted Phases	4		4	8		8	2			6		
Actuated Green, G (s)	70.0	70.0	70.0	79.7	79.7	79.7	11.7	11.7			11.7	
Effective Green, g (s)	70.0	70.0	70.0	79.7	79.7	79.7	11.7	11.7			11.7	
Actuated g/C Ratio	0.66	0.66	0.66	0.75	0.75	0.75	0.11	0.11			0.11	
Clearance Time (s)	7.9	7.9	7.9	4.0	7.9	7.9	6.8	6.8			6.8	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0			3.0	
Lane Grp Cap (vph)	485	2334	1044	437	2582	1213	158	172			181	
v/s Ratio Prot		c0.26		0.01	c0.20			0.01			0.00	
v/s Ratio Perm	0.00		0.09	0.14		0.00	c0.06					
v/c Ratio	0.00	0.40	0.14	0.20	0.27	0.00	0.54	0.08			0.00	
Uniform Delay, d1	6.1	8.3	6.7	4.0	4.1	3.3	44.6	42.4			42.0	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			1.00	
Incremental Delay, d2	0.0	0.5	0.3	0.2	0.3	0.0	3.5	0.2			0.0	
Delay (s)	6.2	8.8	7.0	4.2	4.4	3.3	48.1	42.6			42.0	
Level of Service	Α	Α	A	A	Α	A	D	D			D	
Approach Delay (s)		8.5			4.4			44.8			42.0	
Approach LOS		A			A			D			D	
Intersection Summary									-			
HCM 2000 Control Dela			10.7	ŀ	ICM 20	00 Leve	l of Serv	/ice	В			
HCM 2000 Volume to C		ratio	0.41									
Actuated Cycle Length (106.1		Sum of l				18.7				
Intersection Capacity Ut	ilization		79.9%		CU Lev	el of Sei	vice		D			
Analysis Period (min)			15									
c Critical Lane Group												

	٦	-	\mathbf{r}	4	-	×	1	t	\ \	Ļ		
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT		
Lane Configurations	ሻ	<u>††</u>	1	ኘ	††	1	ኘ	4	ሻ	4		
Traffic Volume (vph)	15	969	69	27	781	11	35	6	11	4		
Future Volume (vph)	15	969	69	27	781	11	35	6	11	4		
Lane Group Flow (vph)	16	1065	76	30	858	12	38	43	12	36		
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	NA		
Protected Phases	7	4		3	8			2		6		
Permitted Phases	4		4	8		8	2		6			
Detector Phase	7	4	4	3	8	8	2	2	6	6		
Switch Phase												
Minimum Initial (s)	5.0	30.0	30.0	5.0	30.0	30.0	8.0	8.0	8.0	8.0		
Minimum Split (s)	10.0	37.9	37.9	10.0	37.9	37.9	30.7	30.7	30.7	30.7		
Total Split (s)	20.0	67.9	67.9	20.0	67.9	67.9	31.7	31.7	31.7	31.7		
Total Split (%)	16.7%	56.8%	56.8%	16.7%	56.8%	56.8%	26.5%	26.5%	26.5%	26.5%		
Yellow Time (s)	3.0	5.9	5.9	3.0	5.9	5.9	4.1	4.1	4.1	4.1		
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.6	2.6	2.6	2.6		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7	6.7	6.7		
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes						
Recall Mode	None	Max	Max	None	Max	Max	None	None	None	None		
v/c Ratio	0.03	0.42	0.06	0.07	0.33	0.01	0.29	0.23	0.11	0.21		
Control Delay	2.7	7.8	1.8	2.9	6.2	0.0	46.0	19.2	41.5	18.9		
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Total Delay	2.7	7.8	1.8	2.9	6.2	0.0	46.0	19.2	41.5	18.9		
Queue Length 50th (m)	0.5	49.2	0.0	0.9	22.2	0.0	6.9	1.2	2.1	0.7		
Queue Length 95th (m)	1.9	71.0	4.9	3.0	53.2	0.0	17.1	11.5	7.8	10.0		
Internal Link Dist (m)		440.7			446.3			949.6		204.9		
Turn Bay Length (m)	40.0		22.0	42.0		51.0	20.0		14.0			
Base Capacity (vph)	652	2543	1181	567	2602	1241	375	473	316	431		
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0		
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0		
Reduced v/c Ratio	0.02	0.42	0.06	0.05	0.33	0.01	0.10	0.09	0.04	0.08		
Intersection Summary												
Cycle Length: 119.6												
Actuated Cycle Length: 93.1												
Natural Cycle: 80												
Control Type: Semi Act-Uncoord												
Splits and Phases: 2:	Moonli	ght Ave	& King	sway								
•												

≜ ø2	√ Ø3	₩ Ø4
31.7 s	20 s	67.9 s
		Ø8
31.7 s	20 s	67.9 s

	۶	-	\rightarrow	4	-	*	1	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	<u></u>	1	ľ	<u></u>	1	1	el el		7	¢Î	
Traffic Volume (vph)	15	969	69	27	781	11	35	6	33	11	4	29
Future Volume (vph)	15	969	69	27	781	11	35	6	33	11	4	29
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7		6.7	6.7	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.87		1.00	0.87	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1687	3471	1583	1736	3438	1615	1805	1661		1530	1512	
Flt Permitted	0.33	1.00	1.00	0.24	1.00	1.00	0.73	1.00		0.73	1.00	
Satd. Flow (perm)	582	3471	1583	440	3438	1615	1394	1661		1174	1512	
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	16	1065	76	30	858	12	38	7	36	12	4	32
RTOR Reduction (vph)	0	0	24	0	0	4	0	33	0	0	30	0
Lane Group Flow (vph)	16	1065	52	30	858	8	38	10	0	12	6	0
Heavy Vehicles (%)	7%	4%	2%	4%	5%	0%	0%	0%	0%	18%	0%	10%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8		8	2			6		
Actuated Green, G (s)	69.7	67.4	67.4	72.3	68.7	68.7	7.0	7.0		7.0	7.0	
Effective Green, g (s)	69.7	67.4	67.4	72.3	68.7	68.7	7.0	7.0		7.0	7.0	
Actuated g/C Ratio	0.71	0.69	0.69	0.74	0.70	0.70	0.07	0.07		0.07	0.07	
Clearance Time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7		6.7	6.7	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	441	2396	1093	373	2419	1136	99	119		84	108	
v/s Ratio Prot	0.00	c0.31		c0.00	0.25			0.01			0.00	
v/s Ratio Perm	0.03		0.03	0.06		0.01	c0.03			0.01		
v/c Ratio	0.04	0.44	0.05	0.08	0.35	0.01	0.38	0.08		0.14	0.06	
Uniform Delay, d1	4.0	6.7	4.8	3.6	5.7	4.3	43.2	42.3		42.5	42.2	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.0	0.6	0.1	0.1	0.4	0.0	2.5	0.3		0.8	0.2	
Delay (s)	4.1	7.3	4.9	3.7	6.1	4.3	45.7	42.6		43.3	42.5	
Level of Service	Α	Α	Α	Α	Α	Α	D	D		D	D	
Approach Delay (s)		7.1			6.0			44.1			42.7	
Approach LOS		А			А			D			D	
Intersection Summary												
HCM 2000 Control Dela			8.8	H	ICM 20	00 Leve	l of Serv	/ice	Α			
HCM 2000 Volume to C	ratio	0.42										
Actuated Cycle Length (97.6			ost time			19.6				
Intersection Capacity Ut	tilization		52.2%	l	CU Leve	el of Sei	rvice		А			
Analysis Period (min)			15									
c Critical Lane Group												

Estelle Street Development 3: Bancfroft Dr & Levesque St

	≯	+	+	•	1	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		र्भ	ef 👘		Y		
Traffic Volume (veh/h)	90	113	56	13	19	99	
Future Volume (Veh/h)	90	113	56	13	19	99	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80	
Hourly flow rate (vph)	113	141	70	16	24	124	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	86				445	78	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	86				445	78	
tC, single (s)	4.1				6.5	6.2	
tC, 2 stage (s)							
tF (s)	2.2				3.6	3.3	
p0 queue free %	93				95	87	
cM capacity (veh/h)	1523				518	985	
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	254	86	148				
Volume Left	113	0	24				
Volume Right	0	16	124				
cSH	1523	1700	860				
Volume to Capacity	0.07	0.05	0.17				
Queue Length 95th (m)	1.9	0.0	5.0				
Control Delay (s)	3.7	0.0	10.1				
Lane LOS	А		В				
Approach Delay (s)	3.7	0.0	10.1				
Approach LOS			В				
Intersection Summary							
Average Delay			5.0				
Intersection Capacity Uti	lization		31.4%	IC	CU Leve	l of Servi	се
Analysis Period (min)			15				

Estelle Street DevelopmentHCM Unsignalized Intersection Capacity Analysis4: Moonlight Beach Rd/Moonlight Ave & Bancfroft DrExisting (2021) PM Peak Hour

	۶	-	\mathbf{F}	4	-	*	•	1	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			÷	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	53	64	2	3	40	8	7	5	3	34	3	31
Future Volume (vph)	53	64	2	3	40	8	7	5	3	34	3	31
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Hourly flow rate (vph)	62	74	2	3	47	9	8	6	3	40	3	36
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	138	59	17	79								
Volume Left (vph)	62	3	8	40								
Volume Right (vph)	2	9	3	36								
Hadj (s)	0.08	-0.08	-0.01	-0.09								
Departure Headway (s)	4.3	4.2	4.4	4.3								
Degree Utilization, x	0.16	0.07	0.02	0.09								
Capacity (veh/h)	823	833	768	805								
Control Delay (s)	8.1	7.5	7.5	7.7								
Approach Delay (s)	8.1	7.5	7.5	7.7								
Approach LOS	A	А	А	А								
Intersection Summary												
Delay			7.8									
Level of Service			А									
Intersection Capacity Uti	lization		24.9%	[(CU Leve	el of Ser	vice		А			
Analysis Period (min)			15									

А

Intersection		
Intersection Delay, s/veh	7.8	

Intersection Delay, s/veh Intersection LOS

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			÷			÷			÷	
Traffic Vol, veh/h	53	64	2	3	40	8	7	5	3	34	3	31
Future Vol, veh/h	53	64	2	3	40	8	7	5	3	34	3	31
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	3	0	7
Mvmt Flow	62	74	2	3	47	9	8	6	3	40	3	36
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Lef	t SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Rig	ht NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	8.1			7.5			7.5			7.7		
HCM LOS	А			А			Α			А		

Lane	NBLn1	EBLn1\	VBLn1	SBLn1	
Vol Left, %	47%	45%	6%	50%	
Vol Thru, %	33%	54%	78%	4%	
Vol Right, %	20%	2%	16%	46%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	15	119	51	68	
LT Vol	7	53	3	34	
Through Vol	5	64	40	3	
RT Vol	3	2	8	31	
Lane Flow Rate	17	138	59	79	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.021	0.161	0.067	0.093	
Departure Headway (Hd)	4.398	4.193	4.092	4.236	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	818	847	862	851	
Service Time	2.4	2.261	2.182	2.236	
HCM Lane V/C Ratio	0.021	0.163	0.068	0.093	
HCM Control Delay	7.5	8.1	7.5	7.7	
HCM Lane LOS	A	А	Α	А	
HCM 95th-tile Q	0.1	0.6	0.2	0.3	

	٠	-	+	*	1	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		र्भ	eî 👘		Y			
Traffic Volume (veh/h)	6	126	65	4	1	0		
Future Volume (Veh/h)	6	126	65	4	1	0		
Sign Control		Free	Free		Stop			
Grade		0%	0%		0%			
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94		
Hourly flow rate (vph)	6	134	69	4	1	0		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type		None	None					
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked						- 4		
vC, conflicting volume	73				217	71		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol	70				047	74		
vCu, unblocked vol	73				217	71		
tC, single (s)	4.1				6.4	6.2		
tC, 2 stage (s)	0.0				25	2.2		
tF (s)	2.2 100				3.5	3.3		
p0 queue free %					100	100		
cM capacity (veh/h)	1540				773	997		
Direction, Lane #	EB 1	WB 1	SB 1					
Volume Total	140	73	1					
Volume Left	6	0	1					
Volume Right	0	4	0					
cSH	1540	1700	773					
Volume to Capacity	0.00	0.04	0.00					
Queue Length 95th (m)	0.1	0.0	0.0					
Control Delay (s)	0.3	0.0	9.7					
Lane LOS	А		А					
Approach Delay (s)	0.3	0.0	9.7					
Approach LOS			A					
Intersection Summary								
Average Delay			0.3					
Intersection Capacity Uti	lization		21.5%](CU Leve	l of Service)	А
Analysis Period (min)			15					

Estelle Street Development 1: Levesque St & Kingsway

	-	\rightarrow	1	+	1	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBT	Ø6
Lane Configurations	† †	1	5	† †	ሻ	4Î	
Traffic Volume (vph)	350	81	115	751	192	0	
Future Volume (vph)	350	81	115	751	192	0	
Lane Group Flow (vph)	389	90	128	834	213	122	
Turn Type	NA	Perm	pm+pt	NA	Perm	NA	
Protected Phases	4		3	8		2	6
Permitted Phases		4	8		2		
Detector Phase	4	4	3	8	2	2	
Switch Phase	00.0	00.0	5.0	00.0	0.0	0.0	0.0
Minimum Initial (s)	30.0	30.0	5.0	30.0	8.0	8.0	8.0
Minimum Split (s)	37.9 67.9	37.9 67.9	9.0 16.0	37.9 83.9	27.8 31.8	27.8 31.8	27.8 31.8
Total Split (s)			13.8%				27%
Total Split (%) Yellow Time (s)	50.7%	50.7%	3.0	72.5% 5.9	3.6	3.6	3.6
All-Red Time (s)	2.0	2.0	3.0 1.0	2.0	3.0	3.0	3.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	J.Z
Total Lost Time (s)	7.9	7.9	4.0	7.9	6.8	6.8	
Lead/Lag	Lag	Lag	Lead	7.0	0.0	0.0	
Lead-Lag Optimize?	Yes	Yes	Yes				
Recall Mode	Max	Max	None	Max	None	None	None
v/c Ratio	0.20	0.09	0.17	0.36	0.81	0.17	
Control Delay	12.5	3.0	6.0	8.4	66.9	0.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	12.5	3.0	6.0	8.4	66.9	0.5	
Queue Length 50th (m)	22.0	0.0	8.2	39.9	47.1	0.0	
Queue Length 95th (m)		7.7	15.6	55.1	#76.6	0.0	
Internal Link Dist (m)	516.5			440.7		737.0	
Turn Bay Length (m)		94.0	30.0		13.0		
Base Capacity (vph)	1904	967	763	2304	319	757	
Starvation Cap Reductr		0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.20	0.09	0.17	0.36	0.67	0.16	
Intersection Summary							
Cycle Length: 115.7							
Actuated Cycle Length:	111.5						
Natural Cycle: 75							
Control Type: Semi Act							
# 95th percentile volu				•	hay be lo	onger.	
Queue shown is max	ximum a	atter two	cycles.				
Splits and Phases: 1:	Leves	ue St 8	Kingsw	/ay			
1 ø2		Ø 3					

Ø2	🕈 Ø3	₩Ø4	
31.8 s	16 s	67.9 s	
31.8 s	83.9 s		

JD Engineering

Estelle Street Development 1: Levesque St & Kingsway

	۶	-	\mathbf{r}	4	←	•	1	Ť	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	- † †	1	٦	- † †	1	٦	el 👘			4	
Traffic Volume (vph)	0	350	81	115	751	0	192	0	110	0	0	0
Future Volume (vph)	0	350	81	115	751	0	192	0	110	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		7.9	7.9	4.0	7.9		6.8	6.8				
Lane Util. Factor		0.95	1.00	1.00	0.95		1.00	1.00				
Frt		1.00	0.85	1.00	1.00		1.00	0.85				
Flt Protected		1.00	1.00	0.95	1.00		0.95	1.00				
Satd. Flow (prot)		3312	1615	1805	3374		1787	1553				
Flt Permitted		1.00	1.00	0.49	1.00		0.76	1.00				
Satd. Flow (perm)		3312	1615	933	3374		1424	1553				
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	389	90	128	834	0	213	0	122	0	0	0
RTOR Reduction (vph)	0	0	38	0	0	0	0	99	0	0	0	0
Lane Group Flow (vph)	0	389	52	128	834	0	213	23	0	0	0	0
Heavy Vehicles (%)	5%	9%	0%	0%	7%	1%	1%	0%	4%	0%	0%	0%
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	Perm	NA				
Protected Phases		4		3	8			2			6	
Permitted Phases	4		4	8		8	2			6		
Actuated Green, G (s)		64.1	64.1	76.1	76.1		20.6	20.6				
Effective Green, g (s)		64.1	64.1	76.1	76.1		20.6	20.6				
Actuated g/C Ratio		0.58	0.58	0.68	0.68		0.18	0.18				
Clearance Time (s)		7.9	7.9	4.0	7.9		6.8	6.8				
Vehicle Extension (s)		3.0	3.0	3.0	3.0		3.0	3.0				
Lane Grp Cap (vph)		1905	929	699	2304		263	287				
v/s Ratio Prot		0.12		0.01	c0.25			0.01				
v/s Ratio Perm			0.03	0.11			c0.15					
v/c Ratio		0.20	0.06	0.18	0.36		0.81	0.08				
Uniform Delay, d1		11.4	10.4	6.1	7.4		43.5	37.6				
Progression Factor		1.00	1.00	1.00	1.00		1.00	1.00				
Incremental Delay, d2		0.2	0.1	0.1	0.4		16.6	0.1				
Delay (s)		11.6	10.5	6.2	7.9		60.1	37.7				
Level of Service		В	В	А	А		E	D				
Approach Delay (s)		11.4			7.7			51.9			0.0	
Approach LOS		В			А			D			А	
Intersection Summary												
HCM 2000 Control Dela	у		17.0	F	ICM 20	00 Leve	l of Serv	/ice	В			
HCM 2000 Volume to Ca	apacity	ratio	0.48									
Actuated Cycle Length (s)		111.4	S	Sum of l	ost time	(s)		18.7			
Intersection Capacity Ut	ilization		79.5%	ŀ	CU Leve	el of Ser	vice		D			
Analysis Period (min)			15									
c Critical Lane Group												

	٦	-	\mathbf{r}	4	+	•	1	t	1	ţ
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations	۲	<u></u>	1	1	<u></u>	1	۲	eî 👘	۲	4Î
Traffic Volume (vph)	29	477	33	3	936	10	55	5	3	
Future Volume (vph)	29	477	33	3	936	10	55	5	3	
Lane Group Flow (vph)	34	555	38	3	1088	12	64	26	3	16
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	NA
Protected Phases	7	4		3	8			2		6
Permitted Phases	4		4	8		8	2		6	
Detector Phase	7	4	4	3	8	8	2	2	6	6
Switch Phase										
Minimum Initial (s)	5.0	30.0	30.0	5.0	30.0	30.0	8.0	8.0	8.0	
Minimum Split (s)	10.0	37.9	37.9	10.0	37.9	37.9	30.7	30.7	30.7	30.7
Total Split (s)	20.0	67.9	67.9	20.0	67.9	67.9	31.7	31.7	31.7	31.7
Total Split (%)		56.8%	56.8%	16.7%	56.8%	56.8%	26.5%		26.5%	
Yellow Time (s)	3.0	5.9	5.9	3.0	5.9	5.9	4.1	4.1	4.1	4.1
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.6	2.6	2.6	2.6
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7	6.7	6.7
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag				
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes				
Recall Mode	None	Max	Max	None	Max	Max	None	None	None	None
v/c Ratio	0.11	0.22	0.04	0.00	0.44	0.01	0.43	0.13	0.03	0.11
Control Delay	3.7	5.1	0.3	3.3	9.0	0.0	49.8	21.0	39.0	20.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	3.7	5.1	0.3	3.3	9.0	0.0	49.8	21.0	39.0	20.7
Queue Length 50th (m)		14.2	0.0	0.1	55.1	0.0	11.9	1.1	0.5	0.2
Queue Length 95th (m)	3.6	33.0	0.5	0.8	76.2	0.0	24.2	8.3	3.1	5.9
Internal Link Dist (m)		440.7			446.3			949.6		204.9
Turn Bay Length (m)	40.0		22.0	42.0		51.0	20.0		14.0	
Base Capacity (vph)	400	2555	1007	831	2477	992	367	459	222	326
Starvation Cap Reductr		0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.09	0.22	0.04	0.00	0.44	0.01	0.17	0.06	0.01	0.05
Intersection Summary										
Cycle Length: 119.6										
Actuated Cycle Length:	95									
Natural Cycle: 80										
Control Type: Semi Act-	-Uncoor	ď								
Splits and Phases: 2:	Moonli	ght Ave	& Kinas	swav						
	1	3	~							

₫ <i>ø</i> 2	√ Ø3	Ø4	
31.7 s	20 s	67.9 s	
		∲ Ø8	
31.7 s	20 s	67.9 s	

	≯	-	\rightarrow	*	+	*	•	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	<u></u>	1	ľ	<u></u>	1	ľ	et		1	el el	
Traffic Volume (vph)	29	477	33	3	936	10	55	5	17	3	1	13
Future Volume (vph)	29	477	33	3	936	10	55	5	17	3	1	13
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7		6.7	6.7	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.88		1.00	0.86	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1280	3312	1282	1805	3438	1346	1770	1681		1081	1196	
Flt Permitted	0.23	1.00	1.00	0.44	1.00	1.00	0.75	1.00		0.74	1.00	
Satd. Flow (perm)	305	3312	1282	844	3438	1346	1392	1681		842	1196	
Peak-hour factor, PHF	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Adj. Flow (vph)	34	555	38	3	1088	12	64	6	20	3	1	15
RTOR Reduction (vph)	0	0	11	0	0	4	0	18	0	0	14	0
Lane Group Flow (vph)	34	555	27	3	1088	8	64	8	0	3	2	0
Heavy Vehicles (%)	41%	9%	26%	0%	5%	20%	2%	0%	0%	67%	0%	39%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8		8	2			6		
Actuated Green, G (s)	75.4	71.5	71.5	69.8	68.7	68.7	8.4	8.4		8.4	8.4	
Effective Green, g (s)	75.4	71.5	71.5	69.8	68.7	68.7	8.4	8.4		8.4	8.4	
Actuated g/C Ratio	0.75	0.71	0.71	0.69	0.68	0.68	0.08	0.08		0.08	0.08	
Clearance Time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7		6.7	6.7	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	266	2353	911	596	2347	919	116	140		70	99	
v/s Ratio Prot	c0.00	c0.17		0.00	c0.32			0.00			0.00	
v/s Ratio Perm	0.09		0.02	0.00		0.01	c0.05			0.00		
v/c Ratio	0.13	0.24	0.03	0.01	0.46	0.01	0.55	0.05		0.04	0.02	
Uniform Delay, d1	3.8	5.1	4.3	4.7	7.4	5.1	44.3	42.4		42.4	42.3	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.2	0.2	0.1	0.0	0.7	0.0	5.6	0.2		0.3	0.1	
Delay (s)	4.0	5.3	4.4	4.7	8.1	5.1	49.9	42.6		42.7	42.4	
Level of Service	A	A	A	A	Α	A	D	D		D	D	
Approach Delay (s)		5.2			8.0			47.8			42.5	
Approach LOS		A			A			D			D	
Intersection Summary												
HCM 2000 Control Dela			9.3	ŀ	ICM 20	00 Leve	l of Serv	/ice	А			
HCM 2000 Volume to C		ratio	0.46									
Actuated Cycle Length			100.6		Sum of l				19.6			
Intersection Capacity U	tilization		52.2%		CU Leve	el of Sei	rvice		A			
Analysis Period (min)			15									
c Critical Lane Group												

Estelle Street Development 3: Bancfroft Dr & Levesque St

	≯	+	+	*	1	<	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		र्भ	ef 👘		Y		
Traffic Volume (veh/h)	87	29	83	22	18	108	
Future Volume (Veh/h)	87	29	83	22	18	108	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	97	32	92	24	20	120	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked						101	
vC, conflicting volume	116				330	104	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol	440				220	404	
vCu, unblocked vol	116				330	104	
tC, single (s)	4.2				6.4	6.2	
tC, 2 stage (s)	0.0				25	2.2	
tF (s)	2.3 93				3.5 97	3.3 87	
p0 queue free %	93 1448				97 624		
cM capacity (veh/h)	1440				024	945	
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	129	116	140				
Volume Left	97	0	20				
Volume Right	0	24	120				
cSH	1448	1700	880				
Volume to Capacity	0.07	0.07	0.16				
Queue Length 95th (m)	1.7	0.0	4.5				
Control Delay (s)	5.9	0.0	9.9				
Lane LOS	A		А				
Approach Delay (s)	5.9	0.0	9.9				
Approach LOS			A				
Intersection Summary							
Average Delay			5.6				
Intersection Capacity Uti	ilization		27.3%	IC	CU Leve	l of Servi	се
Analysis Period (min)			15				
, ()			-				

Estelle Street DevelopmentHCM Unsignalized Intersection Capacity Analysis4: Moonlight Beach Rd/Moonlight Ave & Bancfroft DrExsiting (2021) AM Peak Hour

	≯	+	*	4	Ļ	*	•	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			4			\$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	16	27	2	0	56	21	4	0	0	14	1	24
Future Volume (vph)	16	27	2	0	56	21	4	0	0	14	1	24
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Hourly flow rate (vph)	18	31	2	0	64	24	5	0	0	16	1	28
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	51	88	5	45								
Volume Left (vph)	18	0	5	16								
Volume Right (vph)	2	24	0	28								
Hadj (s)	0.17	-0.09	0.20	-0.03								
Departure Headway (s)	4.3	4.0	4.4	4.2								
Degree Utilization, x	0.06	0.10	0.01	0.05								
Capacity (veh/h)	827	889	774	832								
Control Delay (s)	7.5	7.4	7.5	7.4								
Approach Delay (s)	7.5	7.4	7.5	7.4								
Approach LOS	А	А	А	А								
Intersection Summary												
Delay			7.4									
Level of Service			А									
Intersection Capacity Uti	lization		19.1%	[(CU Leve	el of Ser	vice		А			
Analysis Period (min)			15									

А

Intersection

Intersection Delay, s/veh 7.5 Intersection LOS

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			÷	
Traffic Vol, veh/h	16	27	2	0	56	21	4	0	0	14	1	24
Future Vol, veh/h	16	27	2	0	56	21	4	0	0	14	1	24
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles, %	13	4	0	0	6	0	0	0	0	15	0	17
Mvmt Flow	18	31	2	0	64	24	5	0	0	16	1	28
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB				WB		NB			SB		
Opposing Approach	WB				EB		SB			NB		
Opposing Lanes	1				1		1			1		
Conflicting Approach Left	SB				NB		EB			WB		
Conflicting Lanes Left	1				1		1			1		
Conflicting Approach Rig	ht NB				SB		WB			EB		
Conflicting Lanes Right	1				1		1			1		
HCM Control Delay	7.6				7.4		7.5			7.4		
HCM LOS	Α				А		Α			Α		

Lane	NBLn1	EBLn1\	WBLn1	SBLn1	
Vol Left, %	100%	36%	0%	36%	
Vol Thru, %	0%	60%	73%	3%	
Vol Right, %	0%	4%	27%	62%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	4	45	77	39	
LT Vol	4	16	0	14	
Through Vol	0	27	56	1	
RT Vol	0	2	21	24	
Lane Flow Rate	5	52	89	45	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.006	0.062	0.097	0.051	
Departure Headway (Hd)	4.379	4.319	3.964	4.104	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	808	826	901	864	
Service Time	2.454	2.361	2.003	2.17	
HCM Lane V/C Ratio	0.006	0.063	0.099	0.052	
HCM Control Delay	7.5	7.6	7.4	7.4	
HCM Lane LOS	A	A	А	А	
HCM 95th-tile Q	0	0.2	0.3	0.2	

メ チ チ キ ト イ

Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		र्स	ef 👘		Y			
Traffic Volume (veh/h)	2	48	97	6	1	5		
Future Volume (Veh/h)	2	48	97	6	1	5		
Sign Control		Free	Free		Stop			
Grade		0%	0%		0%			
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93		
Hourly flow rate (vph)	2	52	104	6	1	5		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type		None	None					
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	110				163	107		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	110				163	107		
tC, single (s)	4.1				6.9	6.2		
tC, 2 stage (s)								
tF (s)	2.2				4.0	3.3		
p0 queue free %	100				100	99		
cM capacity (veh/h)	1493				727	953		
			SB 1					
Direction, Lane #	EB 1	WB 1						
Volume Total	54	110	6					
Volume Left	2	0	1					
Volume Right	0	6	5					
cSH Valuma ta Canacitu	1493	1700	906					
Volume to Capacity	0.00	0.06	0.01					
Queue Length 95th (m)	0.0	0.0	0.2					
Control Delay (s)	0.3	0.0	9.0					
Lane LOS	A	0.0	A					
Approach Delay (s)	0.3	0.0	9.0					
Approach LOS			A					
Intersection Summary								
Average Delay			0.4					
Intersection Capacity Uti	ilization		15.5%	10	CU Leve	l of Servi	се	А
Analysis Period (min)			15					
•								

Estelle Street Development Tulloch Engineering Inc. JDE-20112 Date: March 5th, 2021

Appendix E – Synchro Analysis Output – Background Traffic Volumes

Estelle Street Development 1: Levesque St/Street 'C' & Kingsway

	≯	-	\mathbf{F}	4	+	•	1	Ť	1	ţ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	ሻ	- † †	1	ሻ		7	ሻ	eî 👘	ሻ	↑	7	
Traffic Volume (vph)	185	439	112	120	1078	163	321	111	59	31	44	
Future Volume (vph)	185	439	112	120	1078	163	321	111	59	31	44	
Lane Group Flow (vph)	206	488	124	133	1198	181	357	251	66	34	49	
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	NA	Perm	
Protected Phases		4		3	8			2		6		
Permitted Phases	4		4	8		8	2		6		6	
Detector Phase	4	4	4	3	8	8	2	2	6	6	6	
Switch Phase												
Minimum Initial (s)	30.0	30.0	30.0	5.0	30.0	30.0	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	37.9	37.9	37.9	9.0	37.9	37.9	27.8	27.8	27.8	27.8	27.8	
Total Split (s)	67.9	67.9	67.9	16.0	83.9	83.9	31.8	31.8	31.8	31.8	31.8	
Total Split (%)	58.7%	58.7%	58.7%	13.8%	72.5%	72.5%	27.5%	27.5%	27.5%	27.5%	27.5%	
Yellow Time (s)	5.9	5.9	5.9	3.0	5.9	5.9	3.6	3.6	3.6	3.6	3.6	
All-Red Time (s)	2.0	2.0	2.0	1.0	2.0	2.0	3.2	3.2	3.2	3.2	3.2	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.9	7.9	7.9	4.0	7.9	7.9	6.8	6.8	6.8	6.8	6.8	
Lead/Lag	Lag	Lag	Lag	Lead								
Lead-Lag Optimize?	Yes	Yes	Yes	Yes								
Recall Mode	Max	Max	Max	None	Max	Max	None	None	None	None	None	
v/c Ratio	0.90	0.27	0.13	0.21	0.54	0.17	1.20	0.62	0.39	0.08	0.12	
Control Delay	64.6	14.4	2.7	6.8	11.7	6.5	157.0	41.8	46.9	37.0	2.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	64.6	14.4	2.7	6.8	11.7	6.5	157.0	41.8	46.9	37.0	2.8	
Queue Length 50th (m)	41.6	30.7	0.0	9.5	73.2	12.0	~103.1	45.7	13.6	6.5	0.0	
Queue Length 95th (m)	#95.6	42.9	8.9	16.2	90.3	21.0	#162.7	74.1	28.6	15.5	3.4	
Internal Link Dist (m)		516.5			440.7			737.0		303.0		
Turn Bay Length (m)	59.0		94.0	30.0		1.0	13.0		75.0			
Base Capacity (vph)	230	1822	944	678	2216	1062	298	404	169	410	414	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.90	0.27	0.13	0.20	0.54	0.17	1.20	0.62	0.39	0.08	0.12	

Intersection Summary

Cycle Length: 115.7

Actuated Cycle Length: 115.7

Natural Cycle: 100

Control Type: Semi Act-Uncoord

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

√ Ø2	√ Ø3	↓ _{Ø4}	
31.8 s	16 s	67.9 s	
\$ Ø6	₩ Ø8		
31.8 s	83.9 s		

JD Engineering

Synchro 10 Report 03-05-2021

Estelle Street Development 1: Levesque St/Street 'C' & Kingsway

	۶	-	\rightarrow	4	←	•	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	- † †	1	٦	<u></u>	1	۲	ef 👘		٦	↑	1
Traffic Volume (vph)	185	439	112	120	1078	163	321	111	115	59	31	44
Future Volume (vph)	185	439	112	120	1078	163	321	111	115	59	31	44
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.9	7.9	7.9	4.0	7.9	7.9	6.8	6.8		6.8	6.8	6.8
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.92		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1719	3312	1615	1805	3374	1599	1787	1720		1805	1900	1615
Flt Permitted	0.23	1.00	1.00	0.44	1.00	1.00	0.73	1.00		0.41	1.00	1.00
Satd. Flow (perm)	418	3312	1615	838	3374	1599	1383	1720		784	1900	1615
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	206	488	124	133	1198	181	357	123	128	66	34	49
RTOR Reduction (vph)	0	0	56	0	0	12	0	32	0	0	0	38
Lane Group Flow (vph)	206	488	68	133	1198	169	357	219	0	66	34	11
Heavy Vehicles (%)	5%	9%	0%	0%	7%	1%	1%	0%	4%	0%	0%	0%
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	Perm	NA		Perm	NA	Perm
Protected Phases		4		3	8			2			6	
Permitted Phases	4		4	8		8	2			6		6
Actuated Green, G (s)	63.7	63.7	63.7	76.0	76.0	76.0	25.0	25.0		25.0	25.0	25.0
Effective Green, g (s)	63.7	63.7	63.7	76.0	76.0	76.0	25.0	25.0		25.0	25.0	25.0
Actuated g/C Ratio	0.55	0.55	0.55	0.66	0.66	0.66	0.22	0.22		0.22	0.22	0.22
Clearance Time (s)	7.9	7.9	7.9	4.0	7.9	7.9	6.8	6.8		6.8	6.8	6.8
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	230	1823	889	619	2216	1050	298	371		169	410	348
v/s Ratio Prot		0.15		0.02	c0.36			0.13			0.02	
v/s Ratio Perm	c0.49		0.04	0.13		0.11	c0.26			0.08		0.01
v/c Ratio	0.90	0.27	0.08	0.21	0.54	0.16	1.20	0.59		0.39	0.08	0.03
Uniform Delay, d1	23.1	13.7	12.2	7.5	10.6	7.6	45.4	40.7		38.8	36.2	35.8
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	37.4	0.4	0.2	0.2	1.0	0.3	116.9	2.4		1.5	0.1	0.0
Delay (s)	60.4	14.1	12.4	7.6	11.5	7.9	162.3	43.1		40.3	36.3	35.8
Level of Service	E	В	В	A	B	A	F	D		D	D	D
Approach Delay (s)		25.5			10.7			113.1			37.9	
Approach LOS		С			В			F			D	
Intersection Summary			00.4		1014.00			•				
HCM 2000 Control Dela			36.1	F	ICM 20	00 Leve	l of Ser	vice	D			
HCM 2000 Volume to C		ratio	0.95	_			()		40.7			
Actuated Cycle Length (115.7		Sum of l				18.7			
Intersection Capacity Ut	ilization	1	03.7%		CU Leve	el of Sel	rvice		G			
Analysis Period (min)			15									
c Critical Lane Group												

	≯	-	\mathbf{r}	4	-	•	1	t	1	Ļ
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations	<u>۲</u>	<u>††</u>	1	۲	<u>^</u>	1	۲	eî 👘	۲	4Î
Traffic Volume (vph)	29	631	35	3	1435	10	58	5	3	1
Future Volume (vph)	29	631	35	3	1435	10	58	5	3	1
Lane Group Flow (vph)	34	734	41	3	1669	12	67	27	3	16
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	NA
Protected Phases	7	4		3	8			2		6
Permitted Phases	4		4	8		8	2		6	
Detector Phase	7	4	4	3	8	8	2	2	6	6
Switch Phase										
Minimum Initial (s)	5.0	30.0	30.0	5.0	30.0	30.0	8.0	8.0	8.0	8.0
Minimum Split (s)	10.0	37.9	37.9	10.0	37.9	37.9	30.7	30.7	30.7	30.7
Total Split (s)	20.0	67.9	67.9	20.0	67.9	67.9	31.7	31.7	31.7	31.7
					56.8%				26.5%	
Yellow Time (s)	3.0	5.9	5.9	3.0	5.9	5.9	4.1	4.1	4.1	4.1
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.6	2.6	2.6	2.6
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7	6.7	6.7
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag				
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes				
Recall Mode	None	Max	Max	None	Max	Max	None	None	None	None
v/c Ratio	0.19	0.29	0.04	0.00	0.68	0.01	0.44	0.13	0.03	0.11
Control Delay	5.5	5.5	0.5	3.3	13.1	0.0	50.2	20.9	39.0	20.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	5.5	5.5	0.5	3.3	13.1	0.0	50.2	20.9	39.0	20.6
Queue Length 50th (m)	1.2	20.3	0.0	0.1	113.5	0.0	12.5	1.1	0.6	0.2
Queue Length 95th (m)	3.7	45.6	0.8	0.8	151.6	0.0	24.9	8.5	3.1	5.9
Internal Link Dist (m)		440.7			446.3			949.6		204.9
Turn Bay Length (m)	40.0		22.0	42.0		51.0	20.0		14.0	
Base Capacity (vph)	284	2550	1005	742	2472	990	366	458	222	326
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.12	0.29	0.04	0.00	0.68	0.01	0.18	0.06	0.01	0.05
Intersection Summary										
Cycle Length: 119.6										
Actuated Cycle Length:	95.2									
Natural Cycle: 90	1.1	-								
Control Type: Semi Act-	Uncoor	a								
Splits and Phases: 2:	Moonli	ght Ave	& Kings	sway						

≜ ¶ø2	√ Ø3	↓ ₀₄	
31.7 s	20 s	67.9 s	
	▶ Ø1	₩ Ø8	
31.7 s	20 s	67.9 s	

	≯	-	\mathbf{F}	4	+	•	•	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	<u></u>	1	ľ	<u></u>	1	ľ	et		ľ	el el	
Traffic Volume (vph)	29	631	35	3	1435	10	58	5	18	3	1	13
Future Volume (vph)	29	631	35	3	1435	10	58	5	18	3	1	13
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7		6.7	6.7	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.88		1.00	0.86	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1280	3312	1282	1805	3438	1346	1770	1678		1081	1196	
FIt Permitted	0.09	1.00	1.00	0.37	1.00	1.00	0.75	1.00		0.74	1.00	
Satd. Flow (perm)	126	3312	1282	708	3438	1346	1392	1678		841	1196	
Peak-hour factor, PHF	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Adj. Flow (vph)	34	734	41	3	1669	12	67	6	21	3	1	15
RTOR Reduction (vph)	0	0	12	0	0	4	0	19	0	0	14	0
Lane Group Flow (vph)	34	734	29	3	1669	8	67	8	0	3	2	0
Heavy Vehicles (%)	41%	9%	26%	0%	5%	20%	2%	0%	0%	67%	0%	39%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8		8	2			6		
Actuated Green, G (s)	75.5	71.5	71.5	69.7	68.6	68.6	8.5	8.5		8.5	8.5	
Effective Green, g (s)	75.5	71.5	71.5	69.7	68.6	68.6	8.5	8.5		8.5	8.5	
Actuated g/C Ratio	0.75	0.71	0.71	0.69	0.68	0.68	0.08	0.08		0.08	0.08	
Clearance Time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7		6.7	6.7	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	140	2351	910	502	2342	916	117	141		70	100	
v/s Ratio Prot	c0.01	c0.22		0.00	c0.49			0.00			0.00	
v/s Ratio Perm	0.17		0.02	0.00		0.01	c0.05			0.00		
v/c Ratio	0.24	0.31	0.03	0.01	0.71	0.01	0.57	0.06		0.04	0.02	
Uniform Delay, d1	7.2	5.4	4.3	4.8	9.9	5.1	44.4	42.4		42.4	42.3	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.9	0.3	0.1	0.0	1.9	0.0	6.6	0.2		0.3	0.1	
Delay (s)	8.1	5.8	4.4	4.8	11.8	5.2	51.0	42.6		42.6	42.4	
Level of Service	A	A	A	A	В	A	D	D		D	D	
Approach Delay (s)		5.8			11.8			48.6			42.4	
Approach LOS		A			В			D			D	
Intersection Summary												
HCM 2000 Control Dela			11.5	F	ICM 20	UU Leve	l of Serv	/ice	В			
HCM 2000 Volume to C		ratio	0.67		· · ·				40.0			
Actuated Cycle Length			100.7		Sum of I				19.6			
Intersection Capacity U	tilization		61.7%		CU Lev	el of Sel	rvice		В			
Analysis Period (min)			15									
c Critical Lane Group												

Estelle Street Development 3: Bancfroft Dr & Levesque St

	≯	→	+	•	1	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		र्भ	ef 👘		Y		
Traffic Volume (veh/h)	273	30	87	71	30	158	
Future Volume (Veh/h)	273	30	87	71	30	158	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	303	33	97	79	33	176	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	176				776	136	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	176				776	136	
tC, single (s)	4.2				6.4	6.2	
tC, 2 stage (s)							
tF (s)	2.3				3.5	3.3	
p0 queue free %	78				89	81	
cM capacity (veh/h)	1376				288	907	
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	336	176	209				
Volume Left	303	0	33				
Volume Right	0	79	176				
cSH	1376	1700	677				
Volume to Capacity	0.22	0.10	0.31				
Queue Length 95th (m)	6.7	0.0	10.5				
Control Delay (s)	7.7	0.0	12.7				
Lane LOS	А		В				
Approach Delay (s)	7.7	0.0	12.7				
Approach LOS			В				
Intersection Summary							
Average Delay			7.3				
Intersection Capacity Uti	lization		47.0%	10		l of Servio	2
Analysis Period (min)	πΖατιΟΠ		47.0%	K			
			10				

Estelle Street Development HCM U 4: Moonlight Beach Rd/Moonlight Ave & Bancfroft Dr HCM Unsignalized Intersection Capacity Analysis cfroft Dr Background (2024) AM Peak Hour

	۶	-	\mathbf{r}	4	←	•	1	1	۲	5	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			4			\$			÷	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	17	39	2	0	107	22	4	0	0	15	1	25
Future Volume (vph)	17	39	2	0	107	22	4	0	0	15	1	25
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Hourly flow rate (vph)	20	45	2	0	123	25	5	0	0	17	1	29
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	67	148	5	47								
Volume Left (vph)	20	0	5	17								
Volume Right (vph)	2	25	0	29								
Hadj (s)	0.15	-0.02	0.20	-0.03								
Departure Headway (s)	4.3	4.1	4.6	4.3								
Degree Utilization, x	0.08	0.17	0.01	0.06								
Capacity (veh/h)	814	868	733	786								
Control Delay (s)	7.7	7.9	7.7	7.6								
Approach Delay (s)	7.7	7.9	7.7	7.6								
Approach LOS	A	А	A	A								
Intersection Summary												
Delay			7.8									
Level of Service			А									
Intersection Capacity Uti	lization		23.6%](CU Leve	el of Ser	vice		А			
Analysis Period (min)			15									

А

Intersection	

Intersection Delay, s/veh 7.8 Intersection LOS

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			÷			÷			÷	
Traffic Vol, veh/h	17	39	2	0	107	22	4	0	0	15	1	25
Future Vol, veh/h	17	39	2	0	107	22	4	0	0	15	1	25
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles, %	13	4	0	0	6	0	0	0	0	15	0	17
Mvmt Flow	20	45	2	0	123	25	5	0	0	17	1	29
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB				WB		NB			SB		
Opposing Approach	WB				EB		SB			NB		
Opposing Lanes	1				1		1			1		
Conflicting Approach Left	SB				NB		EB			WB		
Conflicting Lanes Left	1				1		1			1		
Conflicting Approach Rig	ht NB				SB		WB			EB		
Conflicting Lanes Right	1				1		1			1		
HCM Control Delay	7.8				7.9		7.7			7.6		
HCM LOS	Α				А		А			А		

Lane	NBLn1	EBLn1\	WBLn1	SBLn1	
Vol Left, %	100%	29%	0%	37%	
Vol Thru, %	0%	67%	83%	2%	
Vol Right, %	0%	3%	17%	61%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	4	58	129	41	
LT Vol	4	17	0	15	
Through Vol	0	39	107	1	
RT Vol	0	2	22	25	
Lane Flow Rate	5	67	148	47	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.006	0.081	0.166	0.057	
Departure Headway (Hd)	4.628	4.362	4.04	4.343	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	778	815	882	829	
Service Time	2.63	2.426	2.093	2.343	
HCM Lane V/C Ratio	0.006	0.082	0.168	0.057	
HCM Control Delay	7.7	7.8	7.9	7.6	
HCM Lane LOS	A	А	А	А	
HCM 95th-tile Q	0	0.3	0.6	0.2	

> → ← < > √

					-	•		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		र्स	el el		¥			
Traffic Volume (veh/h)	2	61	149	6	1	5		
Future Volume (Veh/h)	2	61	149	6	1	5		
Sign Control		Free	Free		Stop			
Grade		0%	0%		0%			
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93		
Hourly flow rate (vph)	2	66	160	6	1	5		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type		None	None					
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	166				233	163		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	166				233	163		
tC, single (s)	4.1				6.9	6.2		
tC, 2 stage (s)								
tF (s)	2.2				4.0	3.3		
p0 queue free %	100				100	99		
cM capacity (veh/h)	1424				660	887		
Direction, Lane #	EB 1	WB 1	SB 1					
Volume Total	68	166	6					
Volume Left	2	0	1					
Volume Right	0	6	5					
cSH	1424	1700	839					
Volume to Capacity	0.00	0.10	0.01					
Queue Length 95th (m)	0.0	0.0	0.2					
Control Delay (s)	0.2	0.0	9.3					
Lane LOS	Α		A					
Approach Delay (s)	0.2	0.0	9.3					
Approach LOS			A					
Intersection Summary								
Average Delay			0.3					
Intersection Capacity Uti	lization		18.2%	10	CULeve	el of Servi	ce A	
Analysis Period (min)			10.270	IX.				
			10					

Estelle Street Development 1: Levesque St/Street 'C' & Kingsway

	≯	→	\mathbf{r}	4	+	•	•	t	\ \	Ļ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	ሻ	^	1	1	- † †	1	1	eî 👘	٦	•	1	
Traffic Volume (vph)	86	1207	265	86	833	41	109	25	135	95	286	
Future Volume (vph)	86	1207	265	86	833	41	109	25	135	95	286	
Lane Group Flow (vph)	91	1284	282	91	886	44	116	165	144	101	304	
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	NA	Perm	
Protected Phases		4		3	8			2		6		
Permitted Phases	4		4	8		8	2		6		6	
Detector Phase	4	4	4	3	8	8	2	2	6	6	6	
Switch Phase												
Minimum Initial (s)	30.0	30.0	30.0	5.0	30.0	30.0	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	37.9	37.9	37.9	9.0	37.9	37.9	27.8	27.8	27.8	27.8	27.8	
Total Split (s)	67.9	67.9	67.9	16.0	83.9	83.9	31.8	31.8	31.8	31.8	31.8	
Total Split (%)		58.7%		13.8%					27.5%			
Yellow Time (s)	5.9	5.9	5.9	3.0	5.9	5.9	3.6	3.6	3.6	3.6	3.6	
All-Red Time (s)	2.0	2.0	2.0	1.0	2.0	2.0	3.2	3.2	3.2	3.2	3.2	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.9	7.9	7.9	4.0	7.9	7.9	6.8	6.8	6.8	6.8	6.8	
Lead/Lag	Lag	Lag	Lag	Lead								
Lead-Lag Optimize?	Yes	Yes	Yes	Yes								
Recall Mode	Max	Max	Max	None	Max	Max	None	None	None	None	None	
v/c Ratio	0.24	0.59	0.26	0.31	0.37	0.04	0.52	0.43	0.80	0.32	0.71	
Control Delay	14.4	15.9	2.1	7.7	7.9	2.8	49.9	13.3	73.3	41.9	26.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	14.4	15.9	2.1	7.7	7.9	2.8	49.9	13.3	73.3	41.9	26.1	
Queue Length 50th (m)	9.3	92.0	0.0	5.1	39.0	0.5	24.0	5.2	31.3	20.1	24.3	
Queue Length 95th (m)	22.8	134.9	12.3	11.8	59.0	4.6	42.8	24.0	54.8	36.1	55.5	
Internal Link Dist (m)		516.5			440.7			737.0		303.0		
Turn Bay Length (m)	59.0		94.0	30.0		1.0	13.0		75.0			
Base Capacity (vph)	374	2170	1079	360	2394	1135	301	478	246	435	513	
Starvation Cap Reductr		0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.24	0.59	0.26	0.25	0.37	0.04	0.39	0.35	0.59	0.23	0.59	
Intersection Summary												
Cycle Length: 115.7												
Actuated Cycle Length:	109.4											
Natural Cycle: 75												
Control Type: Semi Act-	-Uncoor	d										

Splits and Phases: 1: Levesque St/Street 'C' & Kingsway

	√ Ø3	↓ Ø4
31.8 s	16 s	67.9 s
	₹ Ø8	
31.8 s	83.9 s	

Estelle Street Development 1: Levesque St/Street 'C' & Kingsway

	۶	-	\rightarrow	4	←	•	1	1	۲	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	- † †	1	٦	<u></u>	1	1	eî		٦	†	1
Traffic Volume (vph)	86	1207	265	86	833	41	109	25	130	135	95	286
Future Volume (vph)	86	1207	265	86	833	41	109	25	130	135	95	286
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.9	7.9	7.9	4.0	7.9	7.9	6.8	6.8		6.8	6.8	6.8
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.87		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1805	3539	1583	1736	3438	1615	1805	1621		1805	1900	1615
Flt Permitted	0.32	1.00	1.00	0.15	1.00	1.00	0.69	1.00		0.57	1.00	1.00
Satd. Flow (perm)	610	3539	1583	272	3438	1615	1314	1621		1074	1900	1615
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	91	1284	282	91	886	44	116	27	138	144	101	304
RTOR Reduction (vph)	0	0	110	0	0	11	0	115	0	0	0	155
Lane Group Flow (vph)	91	1284	172	91	886	33	116	50	0	144	101	149
Heavy Vehicles (%)	0%	2%	2%	4%	5%	0%	0%	0%	3%	0%	0%	0%
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	Perm	NA		Perm	NA	Perm
Protected Phases		4		3	8			2			6	
Permitted Phases	4		4	8		8	2			6		6
Actuated Green, G (s)	67.1	67.1	67.1	77.1	77.1	77.1	18.4	18.4		18.4	18.4	18.4
Effective Green, g (s)	67.1	67.1	67.1	77.1	77.1	77.1	18.4	18.4		18.4	18.4	18.4
Actuated g/C Ratio	0.61	0.61	0.61	0.70	0.70	0.70	0.17	0.17		0.17	0.17	0.17
Clearance Time (s)	7.9	7.9	7.9	4.0	7.9	7.9	6.8	6.8		6.8	6.8	6.8
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	371	2154	963	270	2405	1129	219	270		179	317	269
v/s Ratio Prot		c0.36		0.02	c0.26			0.03			0.05	
v/s Ratio Perm	0.15		0.11	0.22		0.02	0.09			c0.13		0.09
v/c Ratio	0.25	0.60	0.18	0.34	0.37	0.03	0.53	0.19		0.80	0.32	0.55
Uniform Delay, d1	9.9	13.2	9.5	8.1	6.7	5.1	41.9	39.5		44.2	40.4	42.1
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	1.6	1.2	0.4	0.7	0.4	0.0	2.3	0.3		22.4	0.6	2.5
Delay (s)	11.5	14.5	9.9	8.8	7.1	5.1	44.3	39.8		66.6	41.0	44.6
Level of Service	В	B	Α	Α	A	А	D	D		E	D	D
Approach Delay (s)		13.5			7.2			41.6			49.7	
Approach LOS		В			A			D			D	
Intersection Summary			40.0		1014.00	201		·				
HCM 2000 Control Dela			19.6	F		JU Leve	l of Serv	/ice	В			
HCM 2000 Volume to C		ratio	0.63	_		4 4!	(-)		40.7			
Actuated Cycle Length (110.2			ost time			18.7			
Intersection Capacity Ut	inzation		91.3%	10		el of Ser	vice		F			
Analysis Period (min)			15									
c Critical Lane Group												

	≯	-	\mathbf{r}	4	-	•	1	1	1	ŧ
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT
_ane Configurations	ሻ	††	1	ሻ	††	1	ሻ	4	ሻ	eî 👘
raffic Volume (vph)	15	1448	72	28	1007	11	37	6	11	4
iture Volume (vph)	15	1448	72	28	1007	11	37	6	11	4
ne Group Flow (vph)	16	1591	79	31	1107	12	41	45	12	36
ırn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	NA
otected Phases	7	4		3	8			2		6
ermitted Phases	4		4	8		8	2		6	
tector Phase	7	4	4	3	8	8	2	2	6	6
vitch Phase										
nimum Initial (s)	5.0	30.0	30.0	5.0	30.0	30.0	8.0	8.0	8.0	8.0
nimum Split (s)	10.0	37.9	37.9	10.0	37.9	37.9	30.7	30.7	30.7	30.7
al Split (s)	20.0	67.9	67.9	20.0	67.9	67.9	31.7	31.7	31.7	31.7
tal Split (%)			56.8%						26.5%	
llow Time (s)	3.0	5.9	5.9	3.0	5.9	5.9	4.1	4.1	4.1	4.1
Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.6	2.6	2.6	2.6
st Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
al Lost Time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7	6.7	6.7
ad/Lag	Lead	Lag	Lag	Lead	Lag	Lag				
d-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes				
call Mode	None	Max	Max	None	Max	Max	None	None	None	None
Ratio	0.04	0.63	0.07	0.12	0.43	0.01	0.31	0.23	0.11	0.21
ntrol Delay	2.9	10.8	1.9	3.6	7.0	0.0	46.5	18.9	41.3	18.7
eue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
al Delay	2.9	10.8	1.9	3.6	7.0	0.0	46.5	18.9	41.3	18.7
eue Length 50th (m)	0.5	94.6	0.0	1.0	31.8	0.0	7.5	1.2	2.1	0.7
eue Length 95th (m)	2.0	135.6	5.3	3.1	75.4	0.0	18.1	11.6	7.8	10.0
ernal Link Dist (m)		440.7			446.3			949.6		204.9
n Bay Length (m)	40.0		22.0	42.0		51.0	20.0		14.0	
se Capacity (vph)	550	2540	1179	414	2598	1240	375	474	315	430
rvation Cap Reductr	0	0	0	0	0	0	0	0	0	0
illback Cap Reductn	0	0	0	0	0	0	0	0	0	0
rage Cap Reductn	0	0	0	0	0	0	0	0	0	0
duced v/c Ratio	0.03	0.63	0.07	0.07	0.43	0.01	0.11	0.09	0.04	0.08
ersection Summary										
cle Length: 119.6										
tuated Cycle Length:	93.2									
itural Cycle: 90										
ontrol Type: Semi Act-	Uncoor	ď								
olits and Phases: 2:	Moonli	ght Ave	& Kings	sway						
	I	~		- I 🌲						

₫ <i>ø</i> 2	√ Ø3	₩ ₩ Ø4	
31.7 s	20 s	67.9 s	
	✓ Ø7	◆ ▼ Ø8	
31.7 s	20 s	67.9 s	

	۶	-	\rightarrow	4	+	•	1	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	<u></u>	1	۲	<u></u>	1	۲	eî 👘		۲	eî	
Traffic Volume (vph)	15	1448	72	28	1007	11	37	6	35	11	4	29
Future Volume (vph)	15	1448	72	28	1007	11	37	6	35	11	4	29
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7		6.7	6.7	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.87		1.00	0.87	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1687	3471	1583	1736	3438	1615	1805	1659		1530	1512	
Flt Permitted	0.24	1.00	1.00	0.11	1.00	1.00	0.73	1.00		0.73	1.00	
Satd. Flow (perm)	426	3471	1583	206	3438	1615	1394	1659		1172	1512	
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	16	1591	79	31	1107	12	41	7	38	12	4	32
RTOR Reduction (vph)	0	0	25	0	0	4	0	35	0	0	30	0
Lane Group Flow (vph)	16	1591	54	31	1107	8	41	10	0	12	6	0
Heavy Vehicles (%)	7%	4%	2%	4%	5%	0%	0%	0%	0%	18%	0%	10%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8		8	2			6		
Actuated Green, G (s)	69.7	67.4	67.4	72.3	68.7	68.7	7.1	7.1		7.1	7.1	
Effective Green, g (s)	69.7	67.4	67.4	72.3	68.7	68.7	7.1	7.1		7.1	7.1	
Actuated g/C Ratio	0.71	0.69	0.69	0.74	0.70	0.70	0.07	0.07		0.07	0.07	
Clearance Time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7		6.7	6.7	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	333	2394	1092	208	2417	1135	101	120		85	109	
v/s Ratio Prot	0.00	c0.46		c0.01	0.32			0.01			0.00	
v/s Ratio Perm	0.03		0.03	0.10		0.01	c0.03			0.01		
v/c Ratio	0.05	0.66	0.05	0.15	0.46	0.01	0.41	0.08		0.14	0.06	
Uniform Delay, d1	4.2	8.7	4.9	5.6	6.3	4.3	43.3	42.3		42.4	42.2	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.1	1.5	0.1	0.3	0.6	0.0	2.7	0.3		0.8	0.2	
Delay (s)	4.2	10.2	5.0	5.9	7.0	4.3	45.9	42.5		43.2	42.4	
Level of Service	A	В	A	A	Α	A	D	D		D	D	
Approach Delay (s)		9.9			6.9			44.2			42.6	
Approach LOS		A			A			D			D	
Intersection Summary									_			
HCM 2000 Control Dela			10.2	F	ICM 20	00 Leve	l of Serv	lice	В			
HCM 2000 Volume to C		ratio	0.62	-								
Actuated Cycle Length	· /		97.7			ost time			19.6			
Intersection Capacity U	lization		60.9%	10	CU Leve	el of Sei	vice		В			
Analysis Period (min)			15									
c Critical Lane Group												

Estelle Street Development 3: Bancfroft Dr & Levesque St

Lane Configurations 139 118 59 24 60 214 Traffic Volume (Veh/h) 139 118 59 24 60 214 Sign Control Free Free Stop Grade 0% 0% 0% Peak Hour Factor 0.80 0.80 0.80 0.80 0.80 Hourly flow rate (vph) 174 148 74 30 75 268 Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (m) pX, platoon unblocked vC1, snigle (s) 4.1 6.5 6.2 tC, single (s) 4.1 6.5 6.2 tC, single (s) 4.1 6.5 6.2 tC, single (s) 4.1 6.5 6.2 tC, sage 3 2 conf vol VC2, stage 1 conf vol VC2, stage 1 conf vol VC2, stage 1 conf vol VC2, stage 1 conf vol VC2, stage 2 conf vol VC2, unblocked vol tC, single (s) 4.1 6.5 6.2 tC, conflicting volume 104 585 89 tC, single (s) 4.1 6.5 6.2 tC, conflicting volume 104 585 89 tC, single (s) 4.1 6.5 6.2 tC, conflicting volume 104 585 89 tC, single (s) 4.1 6.5 6.2 tC, conflicting volume 104 585 89 tC, single (s) 4.1 6.5 6.2 tC, conflicting volume 104 585 89 tC, single (s) 4.1 6.5 6.2 tC, conflicting volume 104 585 89 tC, conflicting volume 104 585 89 tC, single (s) 4.1 6.5 6.2 tC, conflicting volume 104 585 89 tC, conflict		≯	-	+	•	1	~			
Traffic Volume (veh/h) 139 118 59 24 60 214 Future Volume (Veh/h) 139 118 59 24 60 214 Sign Control Free Free Stop Peak Hour Factor 0.80 0.80 0.80 0.80 0.80 0.80 Peak Hour Factor 0.80 0.80 0.80 0.80 0.80 Peak Hour Factor 0.80 0.80 0.80 0.80 0.80 Peak Hour Factor 0.80 Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (m) pX, platoon unblocked VC, conflicting volume 104 585 89 VC1, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, unblocked vol 104 585 89 tC, single (s) 4.1 6.5 6.2 tC, 2 stage (s) tF (s) 2.2 3.6 3.3 p0 queue free % 88 82 72 Ol queue free % 88 82 72 Direction, Lane # EB 1 WB 1 SB 1 Volume Total 322 104 343 Volume Left 174 0 75 Volume Left 174 0 75 Volume Left 174 0 75 Volume Left 174 0 75 Volume Right 0.30 268 cSH 1500 1700 748 Volume Left 174 0 75 Volume	Movement	EBL	EBT	WBT	WBR	SBL	SBR			
Traffic Volume (veh/h) 139 118 59 24 60 214 Future Volume (veh/h) 139 118 59 24 60 214 Sign Control Free Free Stop Peak Hour Factor 0.80 0.80 0.80 0.80 0.80 0.80 Peak Hour Factor 0.80 0.80 0.80 0.80 0.80 Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (m) pX, platon unblocked VC, conflicting volume 104 585 89 VC1, stage 1 conf vol VC2, stage 2 conf vol VC2, unblocked vol 104 585 89 VC1, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, unblocked vol 104 585 89 tC, single (s) 4.1 6.5 6.2 U, 2 stage (s) UF (s) 2.2 3.6 3.3 p0 queue free % 88 82 72 Ch capacity (veh/h) 1500 410 972 Direction, Lane # EB 1 WB 1 SB 1 Volume Total 322 104 343 Volume Left 174 0 75 Volume Left 174 0 75 Volume Left 174 0 75 Volume Left 174 0 75 Volume Logacity 0.12 0.06 Confe Volume VO	Lane Configurations		ર્સ	4Î		- M				
Sign Control Free Free Stop Grade 0% 0% 0% Grade 080 0.80 0.80 0.80 Peak Hour Factor 0.80 0.80 0.80 0.80 Hourly flow rate (vph) 174 148 74 30 75 268 Pedestrians Lane Width (m) Walking Speed (m/s) Free None None None Median type None None None None None None Median storage veh) Upstream signal (m) pX, platoon unblocked VC, conflicting volume 104 585 89 VC1, stage 1 conf vol VC2, stage 2 conf vol VC2 3.6 3.3 VC2, stage 2 conf vol VC4 585 89 VC1, stage 1 conf vol VC1 VC2, stage (s) 1.1 6.5 6.2 1.0 1.0 1.0 1.0 VC3, stage 1 conf vol 104 585 89 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 <t< td=""><td>Traffic Volume (veh/h)</td><td>139</td><td></td><td></td><td>24</td><td>60</td><td>214</td><td></td><td></td><td></td></t<>	Traffic Volume (veh/h)	139			24	60	214			
Grade 0% 0% 0% Peak Hour Factor 0.80 0.80 0.80 0.80 0.80 Peak Hour Factor 0.80 0.80 0.80 0.80 0.80 Pedestrians 174 148 74 30 75 268 Pedestrians Lane Width (m) Walking Speed (m/s) Ferrent Blockage	Future Volume (Veh/h)	139	118	59	24	60	214			
Peak Hour Factor 0.80 0.80 0.80 0.80 0.80 Hourly flow rate (uph) 174 148 74 30 75 268 Pedestrians Lane Width (m) Yet None	Sign Control		Free	Free		Stop				
Hourly flow rate (vph) 174 148 74 30 75 268 Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage Item Stratege (m/s) Percent Blockage Right turn flare (veh) More None Median storage veh) Upstream signal (m) PX, platoon unblocked VC, conflicting volume 104 585 89 VC1, stage 1 conf vol VC2, stage 2 conf vol VC2, stage (s) 104 585 89 E VC1, stage 1 conf vol VC2, stage (s) Item Stratege V <	Grade		0%	0%		0%				
Pedestrians Image: Control of Control of Control Delay (s) Image: Control Delay (s) Percent Blockage Right turn flare (veh) None Median type None None Median typa (m) None None Median typa (m) None None Median typa (m) None None VD, stage veh) Upstream signal (m) None VC, conflicting volume 104 585 89 VC1, stage 1 conf vol Volumblocked vol 104 585 89 VC2, stage 2 conf vol VCU, unblocked vol 104 585 89 VC2, stage 2 conf vol VCU, unblocked vol 104 585 89 VC2, stage 2 conf vol VCU, unblocked vol 104 585 89 VC2, stage (s) Image: Conf vol VCU Image: Conf vol VCU VC3, stage (s) Image: Conf vol 410 972 Image: Conf vol VI Volume free % 88 82 72 Image: Conf vol VI	Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80			
Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median type None None None None Median storage veh) Upstream signal (m) pX, platoon unblocked VC, conflicting volume 104 585 89 VC1, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 3 C, single (s) 4.1 6.5 6.2 UC 2 stage (s) U F (s) 2.2 3.6 3.3 p0 queue free % 88 82 72 Ch capacity (veh/h) 1500 410 972 Direction, Lane # EB 1 WB 1 SB 1 Volume Total 322 104 343 Volume Total 322 104 343 Volume Left 174 0 75 Volume Right 0 30 268 CSH 1500 1700 748 Volume to Capacity 0.12 0.06 0.46 Queue Length 95th (m) 3.1 0.0 19.4 Control Delay (s) 4.6 0.0 13.8 Approach LOS B Intersection Summary Average Delay 8.1 Intersection Capacity Utilization 43.8% ICU Level of Service A	Hourly flow rate (vph)	174	148	74	30	75	268			
Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (m) pX, platoon unblocked VC2, conflicting volume 104 585 89 vC1, stage 1 conf vol vC2, stage 2 conf vol vC4, unblocked vol 104 585 89 tC, single (s) 4.1 6.5 6.2 C3 stage (s) tF (s) 2.2 3.6 3.3 p0 queue free % 88 88 82 Volume Total 322 104 343 Volume Right 0 0 30 cSH 1500 1700 748 Volume to Capacity 0.1 0.40 268 cSH 1500 1700 748 Volume to Capacity 0.1 0.4 0.0	Pedestrians									
Percent Blockage Right turn flare (veh) Median type None Median type None Wolzen storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume 104 vC2, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage (s) ft (s) 2.2 Stage (s) tf (s) 2.2 of queue free % 88 82 72 cM capacity (veh/h) 1500 Volume Total 322 Volume Total 322 Volume Right 0 0 30 cSH 1500 Volume to Capacity 0.12 Volume to Capacity 0.12 Volume to Capacity (s) 4.6 Control Delay (s) 4.6 Approach LoS A B Intersection Summary Average Delay 8.1 Intersection Capacity Utilization 43.8%	Lane Width (m)									
Right turn flare (veh) Median type None Median storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume 104 585 89 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC4, unblocked vol 104 585 89 tC, single (s) 4.1 6.5 6.2 tC, stage (s)	Walking Speed (m/s)									
Median type None None Median storage veh) Upstream signal (m) PX Jyx, platoon unblocked vC, conflicting volume 104 585 89 vC1, stage 1 conf vol vC2, stage 2 conf vol vC4, unblocked vol 104 585 89 vC2, stage 2 conf vol vC4, unblocked vol 104 585 89 tC, single (s) 4.1 6.5 6.2 tC, 2 stage (s) t t t t tF (s) 2.2 3.6 3.3 t t p0 queue free % 88 82 72 t	Percent Blockage									
Median storage veh) Upstream signal (m) pX, platoon unblocked v vC, conflicting volume 104 585 89 vC1, stage 1 conf vol v </td <td>Right turn flare (veh)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Right turn flare (veh)									
Median storage veh) Upstream signal (m) pX, platoon unblocked v vC, conflicting volume 104 585 89 vC1, stage 1 conf vol v </td <td>Median type</td> <td></td> <td>None</td> <td>None</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Median type		None	None						
pX, platoon unblocked VC, conflicting volume 104 585 89 vC1, stage 1 conf vol vC2, stage 2 conf vol vvC1, stage 1 conf vol vvC2, stage 2 conf vol vC2, stage 2 conf vol 104 585 89 tC, single (s) 4.1 6.5 6.2 tC, 2 stage (s) 104 585 89 tF (s) 2.2 3.6 3.3 p0 queue free % 88 82 72 cM capacity (veh/h) 1500 410 972 Direction, Lane # EB 1 WB 1 SB 1 Volume Total 322 104 343 Volume Right 0 30 268 cSH 1500 1700 748 Volume to Capacity 0.12 0.06 0.46 Queue Length 95th (m) 3.1 0.0 19.4 Control Delay (s) 4.6 0.0 13.8 Lane LOS A B Approach LOS B Intersection Summary 8.1 ICU Level of Service A	Median storage veh)									
vC, conflicting volume 104 585 89 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vCu, unblocked vol 104 585 89 tC, single (s) 4.1 6.5 6.2 tC, 2 stage (s) tr 585 89 tF (s) 2.2 3.6 3.3 p0 queue free % 88 82 72 cM capacity (veh/h) 1500 410 972 Direction, Lane # EB 1 WB 1 SB 1 Volume Total 322 104 343 Volume Left 174 0 75 Volume Right 0 30 268 cSH 1500 1700 748 Volume to Capacity 0.12 0.6 0.46 Queue Length 95th (m) 3.1 0.0 19.4 Control Delay (s) 4.6 0.0 13.8 Lane LOS A B Approach LOS B Intersection Summary B Approach LOS B Intersection Capacity Utilization	Upstream signal (m)									
vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vCu, unblocked vol 104 585 89 vC, single (s) 4.1 6.5 6.2 tC, 2 stage (s) t t t tF (s) 2.2 3.6 3.3 p0 queue free % 88 82 72 cM capacity (veh/h) 1500 410 972 Direction, Lane # EB 1 WB 1 SB 1 Volume Total 322 104 343 Volume Total 322 104 343 Volume Left 174 0 75 Volume Kight 0 30 268 cSH 1500 1700 748 Volume to Capacity 0.12 0.06 0.46 Queue Length 95th (m) 3.1 0.0 19.4 Control Delay (s) 4.6 0.0 13.8 Approach LOS A B Intersection Summary B Average Delay 8.1 Intersection Capacity Utilization 43.8% ICU Level	pX, platoon unblocked									
vC2, stage 2 conf vol vCu, unblocked vol 104 585 89 vC, single (s) 4.1 6.5 6.2 tC, 2 stage (s) tF (s) 2.2 3.6 3.3 p0 queue free % 88 82 72 cM capacity (veh/h) 1500 410 972 Direction, Lane # EB 1 WB 1 SB 1 Volume Total 322 104 343 Volume Total 322 104 343 Volume Left 174 0 75 Volume Right 0 30 268 cSH 1500 1700 748 Volume to Capacity 0.12 0.06 0.46 Queue Length 95th (m) 3.1 0.0 19.4 Control Delay (s) 4.6 0.0 13.8 Lane LOS A B Approach LOS B Intersection Summary 8.1 ICU Level of Service A	vC, conflicting volume	104				585	89			
vC2, stage 2 conf vol vCu, unblocked vol 104 585 89 vC, single (s) 4.1 6.5 6.2 tC, 2 stage (s) tF (s) 2.2 3.6 3.3 p0 queue free % 88 82 72 cM capacity (veh/h) 1500 410 972 Direction, Lane # EB 1 WB 1 SB 1 Volume Total 322 104 343 Volume Total 322 104 343 Volume Left 174 0 75 Volume Right 0 30 268 cSH 1500 1700 748 Volume to Capacity 0.12 0.06 0.46 Queue Length 95th (m) 3.1 0.0 19.4 Control Delay (s) 4.6 0.0 13.8 Lane LOS A B Approach LOS B Intersection Summary 8.1 ICU Level of Service A	vC1, stage 1 conf vol									
tC, single (s) 4.1 6.5 6.2 tC, 2 stage (s)	vC2, stage 2 conf vol									
tC, 2 stage (s) tF (s) 2.2 3.6 3.3 p0 queue free % 88 82 72 cM capacity (veh/h) 1500 410 972 Direction, Lane # EB 1 WB 1 SB 1 Volume Total 322 104 343 Volume Left 174 0 75 Volume Right 0 30 268 cSH 1500 1700 748 Volume to Capacity 0.12 0.06 0.46 Queue Length 95th (m) 3.1 0.0 19.4 Control Delay (s) 4.6 0.0 13.8 Lane LOS A B Approach LOS B B Intersection Summary 8.1 ICU Level of Service A	vCu, unblocked vol	104				585	89			
tC, 2 stage (s) tF (s) 2.2 3.6 3.3 p0 queue free % 88 82 72 cM capacity (veh/h) 1500 410 972 Direction, Lane # EB 1 WB 1 SB 1 Volume Total 322 104 343 Volume Left 174 0 75 Volume Right 0 30 268 cSH 1500 1700 748 Volume to Capacity 0.12 0.06 0.46 Queue Length 95th (m) 3.1 0.0 19.4 Control Delay (s) 4.6 0.0 13.8 Lane LOS A B Approach LOS B B Intersection Summary 8.1 ICU Level of Service A	tC, single (s)	4.1				6.5	6.2			
tF (s) 2.2 3.6 3.3 p0 queue free % 88 82 72 cM capacity (veh/h) 1500 410 972 Direction, Lane # EB 1 WB 1 SB 1 Volume Total 322 104 343 Volume Total 322 104 343 Volume Right 0 30 268 cSH 1500 1700 748 Volume to Capacity 0.12 0.06 0.46 Queue Length 95th (m) 3.1 0.0 19.4 Control Delay (s) 4.6 0.0 13.8 Lane LOS A B Approach Delay (s) 4.6 Approach LOS B B Intersection Summary Average Delay 8.1 ICU Level of Service A										
CM capacity (veh/h) 1500 410 972 Direction, Lane # EB 1 WB 1 SB 1 Volume Total 322 104 343 Volume Left 174 0 75 Volume Right 0 30 268 cSH 1500 1700 748 Volume to Capacity 0.12 0.06 0.46 Queue Length 95th (m) 3.1 0.0 19.4 Control Delay (s) 4.6 0.0 13.8 Lane LOS A B Approach Delay (s) 4.6 0.0 13.8 Approach LOS B B Intersection Summary 8.1 ICU Level of Service A	tF (s)	2.2				3.6	3.3			
Direction, Lane # EB 1 WB 1 SB 1 Volume Total 322 104 343 Volume Left 174 0 75 Volume Right 0 30 268 cSH 1500 1700 748 Volume to Capacity 0.12 0.06 0.46 Queue Length 95th (m) 3.1 0.0 19.4 Control Delay (s) 4.6 0.0 13.8 Lane LOS A B Approach Delay (s) 4.6 0.0 13.8 Approach LOS B B Intersection Summary 8.1 ICU Level of Service A	p0 queue free %	88				82	72			
Volume Total 322 104 343 Volume Left 174 0 75 Volume Right 0 30 268 cSH 1500 1700 748 Volume to Capacity 0.12 0.06 0.46 Queue Length 95th (m) 3.1 0.0 19.4 Control Delay (s) 4.6 0.0 13.8 Lane LOS A B Approach Delay (s) 4.6 0.0 13.8 Lane LOS A B Approach LOS B B Intersection Summary 8.1 Intersection Capacity Utilization 43.8% ICU Level of Service A	cM capacity (veh/h)	1500				410	972			
Volume Left 174 0 75 Volume Right 0 30 268 cSH 1500 1700 748 Volume to Capacity 0.12 0.06 0.46 Queue Length 95th (m) 3.1 0.0 19.4 Control Delay (s) 4.6 0.0 13.8 Lane LOS A B Approach Delay (s) 4.6 0.0 13.8 Approach LOS B B Intersection Summary 8.1 Intersection Capacity Utilization 43.8% ICU Level of Service A	Direction, Lane #	EB 1	WB 1	SB 1						
Volume Right 0 30 268 cSH 1500 1700 748 Volume to Capacity 0.12 0.06 0.46 Queue Length 95th (m) 3.1 0.0 19.4 Control Delay (s) 4.6 0.0 13.8 Lane LOS A B Approach Delay (s) 4.6 0.0 13.8 Intersection Summary B Intersection Summary Average Delay 8.1 ICU Level of Service A	Volume Total	322	104	343						
Volume Right 0 30 268 cSH 1500 1700 748 Volume to Capacity 0.12 0.06 0.46 Queue Length 95th (m) 3.1 0.0 19.4 Control Delay (s) 4.6 0.0 13.8 Lane LOS A B Approach Delay (s) 4.6 0.0 13.8 Intersection Summary B Intersection Summary Average Delay 8.1 Intersection Capacity Utilization 43.8% ICU Level of Service A	Volume Left	174	0	75						
cSH 1500 1700 748 Volume to Capacity 0.12 0.06 0.46 Queue Length 95th (m) 3.1 0.0 19.4 Control Delay (s) 4.6 0.0 13.8 Lane LOS A B Approach Delay (s) 4.6 0.0 13.8 Approach LOS B Intersection Summary Average Delay 8.1 ICU Level of Service A	Volume Right	0	30	268						
Queue Length 95th (m) 3.1 0.0 19.4 Control Delay (s) 4.6 0.0 13.8 Lane LOS A B Approach Delay (s) 4.6 0.0 13.8 Approach LOS B B Intersection Summary 8.1 Intersection Capacity Utilization 43.8% ICU Level of Service A	cSH	1500	1700	748						
Queue Length 95th (m) 3.1 0.0 19.4 Control Delay (s) 4.6 0.0 13.8 Lane LOS A B Approach Delay (s) 4.6 0.0 13.8 Approach LOS B B Intersection Summary 8.1 Intersection Capacity Utilization 43.8% ICU Level of Service A	Volume to Capacity									
Control Delay (s) 4.6 0.0 13.8 Lane LOS A B Approach Delay (s) 4.6 0.0 13.8 Approach LOS B B Intersection Summary 8.1 Intersection Capacity Utilization 43.8% ICU Level of Service A	Queue Length 95th (m)		0.0	19.4						
Lane LOS A B Approach Delay (s) 4.6 0.0 13.8 Approach LOS B Intersection Summary Average Delay 8.1 Intersection Capacity Utilization 43.8% ICU Level of Service A	Control Delay (s)									
Approach Delay (s) 4.6 0.0 13.8 Approach LOS B Intersection Summary Average Delay 8.1 Intersection Capacity Utilization 43.8% ICU Level of Service	Lane LOS	А		В						
Approach LOS B Intersection Summary Average Delay 8.1 Intersection Capacity Utilization 43.8% ICU Level of Service A	Approach Delay (s)		0.0							
Average Delay 8.1 Intersection Capacity Utilization 43.8% ICU Level of Service	Approach LOS									
Intersection Capacity Utilization 43.8% ICU Level of Service A	Intersection Summary									
Intersection Capacity Utilization 43.8% ICU Level of Service A	Average Delay			8.1						
		lization			10	CU Leve	l of Servic	e	А	
	Analysis Period (min)			15						

Estelle Street DevelopmentHCM Unsignalized Intersection Capacity Analysis4: Moonlight Beach Rd/Moonlight Ave & Bancfroft DrBackground (2024) PM Peak Hour

	≯	→	*	4	+	×	•	1	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			\$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	55	107	2	3	52	8	7	5	3	36	3	32
Future Volume (vph)	55	107	2	3	52	8	7	5	3	36	3	32
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Hourly flow rate (vph)	64	124	2	3	60	9	8	6	3	42	3	37
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	190	72	17	82								
Volume Left (vph)	64	3	8	42								
Volume Right (vph)	2	9	3	37								
Hadj (s)	0.06	-0.07	-0.01	-0.09								
Departure Headway (s)	4.3	4.3	4.6	4.4								
Degree Utilization, x	0.23	0.09	0.02	0.10								
Capacity (veh/h)	822	814	732	760								
Control Delay (s)	8.5	7.7	7.7	7.9								
Approach Delay (s)	8.5	7.7	7.7	7.9								
Approach LOS	А	А	А	А								
Intersection Summary												
Delay			8.2									
Level of Service			А									
Intersection Capacity Uti	lization		27.5%](CU Leve	el of Ser	vice		А			
Analysis Period (min)			15									

A

Intersection LOS

Intersection	
Intersection Delay, s/veh	8.2

WBT WBR Movement EBL EBT EBR WBL NBL NBT NBR SBL SBT SBR Lane Configurations **♣** 52 **♣** 5 **♣** 3 4 Traffic Vol, veh/h 107 2 3 8 36 32 55 7 3 Future Vol, veh/h 107 2 3 52 8 7 5 3 36 3 32 55 0.86 Peak Hour Factor 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 Heavy Vehicles, % 0 0 0 0 0 0 0 0 0 3 0 7 124 2 60 Mvmt Flow 64 3 9 8 6 3 42 3 37 Number of Lanes 0 1 0 0 1 0 0 1 0 1 0 0 EB WB NB SB Approach SB NB **Opposing Approach** WB EΒ **Opposing Lanes** 1 1 1 1 Conflicting Approach Left SB NB EΒ WB **Conflicting Lanes Left** 1 1 1 1 Conflicting Approach Right NB WB SB EΒ **Conflicting Lanes Right** 1 1 1 1 HCM Control Delay 8.5 7.7 7.7 7.9 HCM LOS А А А А

Lane	NBLn1	EBLn1	VBLn1	SBLn1	
Vol Left, %	47%	34%	5%	51%	
Vol Thru, %	33%	65%	83%	4%	
Vol Right, %	20%	1%	13%	45%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	15	164	63	71	
LT Vol	7	55	3	36	
Through Vol	5	107	52	3	
RT Vol	3	2	8	32	
Lane Flow Rate	17	191	73	83	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.022	0.222	0.087	0.101	
Departure Headway (Hd)	4.557	4.19	4.26	4.391	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	789	845	844	821	
Service Time	2.565	2.277	2.27	2.395	
HCM Lane V/C Ratio	0.022	0.226	0.086	0.101	
HCM Control Delay	7.7	8.5	7.7	7.9	
HCM Lane LOS	A	А	А	А	
HCM 95th-tile Q	0.1	0.8	0.3	0.3	

	≯	→	+	•	1	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		र्च	eî 👘		۰Y		
Traffic Volume (veh/h)	6	172	78	4	1	0	
Future Volume (Veh/h)	6	172	78	4	1	0	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Hourly flow rate (vph)	6	183	83	4	1	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	87				280	85	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	87				280	85	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)							
tF (s)	2.2				3.5	3.3	
p0 queue free %	100				100	100	
cM capacity (veh/h)	1522				711	980	
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	189	87	1				
Volume Left	6	0	1				
Volume Right	0	4	0				
cSH	1522	1700	711				
Volume to Capacity	0.00	0.05	0.00				
Queue Length 95th (m)	0.1	0.0	0.0				
Control Delay (s)	0.3	0.0	10.1				
Lane LOS	A		В				
Approach Delay (s)	0.3	0.0	10.1				
Approach LOS			В				
Intersection Summary							
Average Delay			0.2				
Intersection Capacity Uti	ilization		23.9%	IC	CU Leve	l of Servi	се
Analysis Period (min)			15				

Estelle Street Development 1: Levesque St/Street 'C' & Kingsway

	٦	-	\mathbf{r}	1	-	•	1	t	1	ţ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	ሻ	- † †	1	ሻ	- ^	1	ሻ	4	ሻ	↑	1	
Traffic Volume (vph)	185	439	112	120	1078	163	321	111	59	31	44	
Future Volume (vph)	185	439	112	120	1078	163	321	111	59	31	44	
Lane Group Flow (vph)	206	488	124	133	1198	181	357	251	66	34	49	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	NA	Perm	
Protected Phases	7	4		3	8		5	2		6		
Permitted Phases	4		4	8		8	2		6		6	
Detector Phase	7	4	4	3	8	8	5	2	6	6	6	
Switch Phase												
Minimum Initial (s)	4.5	30.0	30.0	5.0	30.0	30.0	4.5	8.0	8.0	8.0	8.0	
Minimum Split (s)	9.0	37.9	37.9	9.0	37.9	37.9	9.0	27.8	27.8	27.8	27.8	
Total Split (s)	15.0	61.0	61.0	9.0	55.0	55.0	25.0	53.0	28.0	28.0	28.0	
Total Split (%)	12.2%	49.6%	49.6%	7.3%	44.7%	44.7%	20.3%	43.1%	22.8%	22.8%	22.8%	
Yellow Time (s)	3.0	5.9	5.9	3.0	5.9	5.9	3.0	3.6	3.6	3.6	3.6	
All-Red Time (s)	1.0	2.0	2.0	1.0	2.0	2.0	1.0	3.2	3.2	3.2	3.2	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.0	7.9	7.9	4.0	7.9	7.9	4.0	6.8	6.8	6.8	6.8	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead		Lag	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	
Recall Mode	None	Max	Max	None	Max	Max	None	None	None	None	None	
v/c Ratio	0.80	0.30	0.15	0.26	0.82	0.24	0.77	0.46	0.52	0.16	0.16	
Control Delay	43.5	19.2	3.8	13.9	35.2	7.3	42.9	27.0	63.3	47.4	1.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	43.5	19.2	3.8	13.9	35.2	7.3	42.9	27.0	63.3	47.4	1.1	
Queue Length 50th (m)	26.4	36.5	0.0	13.3	131.5	5.7	67.4	36.5	14.9	7.4	0.0	
Queue Length 95th (m)	#74.0	53.7	11.0	25.6	#188.2	21.3	97.5	59.9	29.9	17.3	0.0	
Internal Link Dist (m)		516.5			440.7			737.0		303.0		
Turn Bay Length (m)	59.0		94.0	30.0		1.0	100.0		75.0			
Base Capacity (vph)	259	1611	849	503	1455	769	482	756	222	369	434	
Starvation Cap Reductn	ı 0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.80	0.30	0.15	0.26	0.82	0.24	0.74	0.33	0.30	0.09	0.11	
Intersection Summary												
Cycle Length: 123												
Actuated Cycle Length:	110.2											
Natural Cycle: 85												

Natural Cycle: 85

Control Type: Semi Act-Uncoord

95th percentile volume exceeds capacity, queue may be longer. # Queue shown is maximum after two cycles.

Splits and Phases: 1: Levesque St/Street 'C' & Kingsway

	·	✓ Ø3	
53 s		9s 61s	
▲ Ø5	₽ _{Ø6}	▶ 07	
25 s	28 s	15 s 55	is and the second se

JD Engineering

HCM Signalized Intersection Capacity Analysis
Background (2024) AM Peak Hour with Improvements

	≯	-	\mathbf{r}	4	+	*	•	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	††	1	٦	<u></u>	1	٦	eî 👘		٦	↑	1
Traffic Volume (vph)	185	439	112	120	1078	163	321	111	115	59	31	44
Future Volume (vph)	185	439	112	120	1078	163	321	111	115	59	31	44
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	7.9	7.9	4.0	7.9	7.9	4.0	6.8		6.8	6.8	6.8
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.92		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1719	3312	1615	1805	3374	1599	1787	1720		1805	1900	1615
Flt Permitted	0.10	1.00	1.00	0.47	1.00	1.00	0.53	1.00		0.60	1.00	1.00
Satd. Flow (perm)	173	3312	1615	901	3374	1599	993	1720		1147	1900	1615
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	206	488	124	133	1198	181	357	123	128	66	34	49
RTOR Reduction (vph)	0	0	64	0	0	80	0	34	0	0	0	45
Lane Group Flow (vph)	206	488	60	133	1198	101	357	217	0	66	34	4
Heavy Vehicles (%)	5%	9%	0%	0%	7%	1%	1%	0%	4%	0%	0%	0%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm
Protected Phases	7	4		3	8		5	2			6	
Permitted Phases	4		4	8		8	2			6		6
Actuated Green, G (s)	62.7	53.7	53.7	52.6	47.6	47.6	34.3	34.3		10.2	10.2	10.2
Effective Green, g (s)	62.7	53.7	53.7	52.6	47.6	47.6	34.3	34.3		10.2	10.2	10.2
Actuated g/C Ratio	0.56	0.48	0.48	0.47	0.43	0.43	0.31	0.31		0.09	0.09	0.09
Clearance Time (s)	4.0	7.9	7.9	4.0	7.9	7.9	4.0	6.8		6.8	6.8	6.8
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	250	1592	776	464	1437	681	447	528		104	173	147
v/s Ratio Prot	c0.08	0.15		0.01	0.36		c0.14	0.13			0.02	
v/s Ratio Perm	c0.38		0.04	0.12		0.06	c0.10			0.06		0.00
v/c Ratio	0.82	0.31	0.08	0.29	0.83	0.15	0.80	0.41		0.63	0.20	0.03
Uniform Delay, d1	24.3	17.7	15.6	16.9	28.5	19.6	33.6	30.7		49.0	47.0	46.2
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	19.3	0.5	0.2	0.3	5.8	0.5	9.6	0.5		12.0	0.6	0.1
Delay (s)	43.6	18.2	15.8	17.2	34.4	20.1	43.2	31.2		60.9	47.5	46.3
Level of Service	D	В	В	В	С	С	D	С		E	D	D
Approach Delay (s)		24.2			31.1			38.3			53.1	
Approach LOS		С			С			D			D	
Intersection Summary												
HCM 2000 Control Dela			31.8	F	ICM 20	00 Leve	el of Serv	/ice	С			
	Volume to Capacity ratio 0.87											
Actuated Cycle Length			111.7						22.7			
Intersection Capacity U	tilization		83.4%						E			
Analysis Period (min)			15									
c Critical Lane Group												

	٦	→	\mathbf{r}	4	+	•	1	Ť	1	ţ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	ሻ	- ††	1	ሻ		1	ሻ	4	ሻ	↑	1	
Traffic Volume (vph)	185	467	118	130	1139	163	336	111	59	31	44	
Future Volume (vph)	185	467	118	130	1139	163	336	111	59	31	44	
Lane Group Flow (vph)	206	519	131	144	1266	181	373	261	66	34	49	
	pm+pt	NA	Perm	pm+pt		Perm	pm+pt	NA	Perm	NA	Perm	
Protected Phases	7	4		3	8		5	2		6		
Permitted Phases	4		4	8		8	2		6		6	
Detector Phase	7	4	4	3	8	8	5	2	6	6	6	
Switch Phase												
Minimum Initial (s)	4.5	30.0	30.0	5.0	30.0	30.0	4.5	8.0	8.0	8.0	8.0	
Minimum Split (s)	9.0	37.9	37.9	9.0	37.9	37.9	9.0	27.8	27.8	27.8	27.8	
Total Split (s)	15.0	61.0	61.0	9.0	55.0	55.0	25.0	53.0	28.0	28.0	28.0	
Total Split (%)	12.2%	49.6%	49.6%	7.3%	44.7%	44.7%	20.3%	43.1%	22.8%	22.8%	22.8%	
Yellow Time (s)	3.0	5.9	5.9	3.0	5.9	5.9	3.0	3.6	3.6	3.6	3.6	
All-Red Time (s)	1.0	2.0	2.0	1.0	2.0	2.0	1.0	3.2	3.2	3.2	3.2	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.0	7.9	7.9	4.0	7.9	7.9	4.0	6.8	6.8	6.8	6.8	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead		Lag	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	
Recall Mode	None	Max	Max	None	Max	Max	None	None	None	None	None	
v/c Ratio	0.85	0.32	0.15	0.29	0.87	0.24	0.80	0.48	0.53	0.16	0.16	
Control Delay	55.5	19.6	3.7	14.5	38.3	7.3	45.0	27.0	63.6	47.4	1.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	55.5	19.6	3.7	14.5	38.3	7.3	45.0	27.0	63.6	47.4	1.1	
Queue Length 50th (m)	30.7	39.3	0.0	14.5	143.5	5.7	71.3	37.8	14.9	7.4	0.0	
Queue Length 95th (m)	#81.7	57.6	11.4	27.6	#207.2	21.4	102.6	61.8	29.9	17.3	0.0	
Internal Link Dist (m)		516.5			440.7			737.0		303.0		
Turn Bay Length (m)	59.0		94.0	30.0		1.0	100.0		75.0			
Base Capacity (vph)	243	1606	851	489	1451	767	482	753	220	368	433	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.85	0.32	0.15	0.29	0.87	0.24	0.77	0.35	0.30	0.09	0.11	
Intersection Summary												

Cycle Length: 123 Actuated Cycle Length: 110.5

Natural Cycle: 85

Control Type: Semi Act-Uncoord

95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

Splits and Phases: 1: Levesque St/Street 'C' & Kingsway

₫ ø2		Ø3 \$ 04
53 s		9s 61s
▲ Ø5	₽ _{Ø6}	▶ _{Ø7} ♥ Ø8
25 s	28 s	15 s 55 s

JD Engineering

	۶	-	\mathbf{r}	4	+	•	1	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	††	1	٦	^	1	٦	eî 👘		٦	↑	1
Traffic Volume (vph)	185	467	118	130	1139	163	336	111	124	59	31	44
Future Volume (vph)	185	467	118	130	1139	163	336	111	124	59	31	44
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	7.9	7.9	4.0	7.9	7.9	4.0	6.8		6.8	6.8	6.8
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.92		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1719	3312	1615	1805	3374	1599	1787	1713		1805	1900	1615
Flt Permitted	0.08	1.00	1.00	0.46	1.00	1.00	0.53	1.00		0.60	1.00	1.00
Satd. Flow (perm)	141	3312	1615	874	3374	1599	996	1713		1136	1900	1615
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	206	519	131	144	1266	181	373	123	138	66	34	49
RTOR Reduction (vph)	0	0	68	0	0	81	0	37	0	0	0	44
Lane Group Flow (vph)	206	519	63	144	1266	100	373	224	0	66	34	5
Heavy Vehicles (%)	5%	9%	0%	0%	7%	1%	1%	0%	4%	0%	0%	0%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm
Protected Phases	7	4		3	8		5	2			6	
Permitted Phases	4		4	8		8	2			6		6
Actuated Green, G (s)	62.6	53.6	53.6	52.5	47.5	47.5	34.6	34.6		10.3	10.3	10.3
Effective Green, g (s)	62.6	53.6	53.6	52.5	47.5	47.5	34.6	34.6		10.3	10.3	10.3
Actuated g/C Ratio	0.56	0.48	0.48	0.47	0.42	0.42	0.31	0.31		0.09	0.09	0.09
Clearance Time (s)	4.0	7.9	7.9	4.0	7.9	7.9	4.0	6.8		6.8	6.8	6.8
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	235	1586	773	451	1432	678	451	529		104	174	148
v/s Ratio Prot	c0.09	0.16		0.01	0.38		c0.15	0.13			0.02	
v/s Ratio Perm	c0.40		0.04	0.14		0.06	c0.11			0.06		0.00
v/c Ratio	0.88	0.33	0.08	0.32	0.88	0.15	0.83	0.42		0.63	0.20	0.03
Uniform Delay, d1	29.8	18.0	15.8	17.1	29.7	19.8	33.9	30.7		49.0	47.0	46.3
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	28.5	0.6	0.2	0.4	8.3	0.5	11.8	0.6		12.0	0.6	0.1
Delay (s)	58.3	18.6	16.0	17.5	37.9	20.2	45.7	31.3		61.0	47.5	46.3
Level of Service	E	В	В	В	D	С	D	С		E	D	D
Approach Delay (s)		27.7			34.1			39.7			53.1	
Approach LOS		С			С			D			D	
Intersection Summary			04.4			201	1 (0	·				
HCM 2000 Control Dela			34.4	F	ICM 20	JU Leve	el of Serv	/ice	С			
HCM 2000 Volume to C		ratio	0.91			4 4!	(-)		00.7			
Actuated Cycle Length			111.9		Sum of l				22.7			
Intersection Capacity U	unzation		85.9%	10	CU Leve	er of 56	ivice		E			
Analysis Period (min)			15									
c Critical Lane Group												

	٦	→	\mathbf{r}	4	+	×	1	t	5	ŧ
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations	ሻ	<u>††</u>	1	<u>۲</u>	<u></u>	1	۲	eî 👘	۲	el 🗧
Traffic Volume (vph)	29	669	37	3	1510	10	62	5	3	1
Future Volume (vph)	29	669	37	3	1510	10	62	5	3	1
Lane Group Flow (vph)	34	778	43	3	1756	12	72	28	3	16
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	NA
Protected Phases	7	4		3	8			2		6
Permitted Phases	4		4	8		8	2		6	
Detector Phase	7	4	4	3	8	8	2	2	6	6
Switch Phase										
Minimum Initial (s)	5.0	30.0	30.0	5.0	30.0	30.0	8.0	8.0	8.0	8.0
Minimum Split (s)	10.0	37.9	37.9	10.0	37.9	37.9	30.7	30.7	30.7	30.7
Total Split (s)	20.0	67.9	67.9	20.0	67.9	67.9	31.7	31.7	31.7	31.7
Total Split (%)	16.7%	56.8%	56.8%	16.7%	56.8%	56.8%	26.5%	26.5%	26.5%	26.5%
Yellow Time (s)	3.0	5.9	5.9	3.0	5.9	5.9	4.1	4.1	4.1	4.1
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.6	2.6	2.6	2.6
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7	6.7	6.7
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag				
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes				
Recall Mode	None	Max	Max	None	Max	Max	None	None	None	None
v/c Ratio	0.21	0.31	0.04	0.01	0.71	0.01	0.46	0.14	0.03	0.11
Control Delay	6.1	5.8	0.6	3.3	14.3	0.0	50.7	20.2	38.7	20.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	6.1	5.8	0.6	3.3	14.3	0.0	50.7	20.2	38.7	20.4
Queue Length 50th (m)	1.3	22.5	0.0	0.1	127.2	0.0	13.5	1.1	0.6	0.2
Queue Length 95th (m)	3.8	49.6	1.0	0.8	170.0	0.0	26.4	8.7	3.1	5.9
Internal Link Dist (m)		440.7			446.3			949.6		204.9
Turn Bay Length (m)	40.0		22.0	42.0		51.0	20.0		14.0	
Base Capacity (vph)	270	2543	1002	720	2465	987	365	456	221	325
Starvation Cap Reductr		0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.13	0.31	0.04	0.00	0.71	0.01	0.20	0.06	0.01	0.05
Intersection Summary										
Cycle Length: 119.6										
Actuated Cycle Length:	95.5									
Natural Cycle: 100										
Control Type: Semi Act-	-Uncoor	d								
Splits and Dhasas: 2:	Moonli	aht Ava	& King							
Splits and Phases: 2:		ght Ave	a rungs	sway						

₫ <i>ø</i> 2	√ Ø3	₩Ø4	
31.7 s	20 s	67.9 s	
		◆ ▼ Ø8	
31.7 s	20 s	67.9 s	

	≯	-	\rightarrow	*	+	*	•	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	- † †	1	<u>۲</u>	<u></u>	1	٦	el 🕴		٦	eî.	
Traffic Volume (vph)	29	669	37	3	1510	10	62	5	19	3	1	13
Future Volume (vph)	29	669	37	3	1510	10	62	5	19	3	1	13
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7		6.7	6.7	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.88		1.00	0.86	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1280	3312	1282	1805	3438	1346	1770	1676		1081	1196	
Flt Permitted	0.08	1.00	1.00	0.36	1.00	1.00	0.75	1.00		0.74	1.00	
Satd. Flow (perm)	107	3312	1282	678	3438	1346	1392	1676		841	1196	
Peak-hour factor, PHF	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Adj. Flow (vph)	34	778	43	3	1756	12	72	6	22	3	1	15
RTOR Reduction (vph)	0	0	13	0	0	4	0	20	0	0	14	0
Lane Group Flow (vph)	34	778	30	3	1756	8	72	8	0	3	2	0
Heavy Vehicles (%)	41%	9%	26%	0%	5%	20%	2%	0%	0%	67%	0%	39%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8		8	2			6		
Actuated Green, G (s)	75.6	71.6	71.6	69.8	68.7	68.7	8.8	8.8		8.8	8.8	
Effective Green, g (s)	75.6	71.6	71.6	69.8	68.7	68.7	8.8	8.8		8.8	8.8	
Actuated g/C Ratio	0.75	0.71	0.71	0.69	0.68	0.68	0.09	0.09		0.09	0.09	
Clearance Time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7		6.7	6.7	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	126	2345	907	480	2336	914	121	145		73	104	
v/s Ratio Prot	c0.01	c0.23		0.00	c0.51			0.00			0.00	
v/s Ratio Perm	0.19		0.02	0.00		0.01	c0.05			0.00		
v/c Ratio	0.27	0.33	0.03	0.01	0.75	0.01	0.60	0.05		0.04	0.02	
Uniform Delay, d1	8.5	5.6	4.4	4.9	10.6	5.2	44.4	42.3		42.3	42.2	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	1.2	0.4	0.1	0.0	2.3	0.0	7.6	0.2		0.2	0.1	
Delay (s)	9.7	6.0	4.5	4.9	12.9	5.2	52.1	42.5		42.5	42.3	
Level of Service	A	А	А	Α	В	Α	D	D		D	D	
Approach Delay (s)		6.1			12.8			49.4			42.3	
Approach LOS		A			В			D			D	
Intersection Summary												
HCM 2000 Control Dela			12.3	ŀ	ICM 20	00 Leve	l of Serv	/ice	В			
HCM 2000 Volume to C		ratio	0.71									
Actuated Cycle Length	· /		101.1		Sum of I				19.6			
Intersection Capacity U	tilization		64.0%		CU Lev	el of Sei	rvice		С			
Analysis Period (min)			15									
c Critical Lane Group												

Estelle Street Development 3: Bancfroft Dr & Levesque St

	≯	-	+	•	1	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		र्भ	ef 👘		- M		
Traffic Volume (veh/h)	280	33	93	73	31	167	
Future Volume (Veh/h)	280	33	93	73	31	167	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	311	37	103	81	34	186	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	184				802	144	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	184				802	144	
tC, single (s)	4.2				6.4	6.2	
tC, 2 stage (s)	0.0				0.5	0.0	
tF (s)	2.3				3.5	3.3	
p0 queue free %	77				88	79	
cM capacity (veh/h)	1367				275	899	
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	348	184	220				
Volume Left	311	0	34				
Volume Right	0	81	186				
cSH	1367	1700	665				
Volume to Capacity	0.23	0.11	0.33				
Queue Length 95th (m)	7.0	0.0	11.6				
Control Delay (s)	7.7	0.0	13.1				
Lane LOS	A		В				
Approach Delay (s)	7.7	0.0	13.1				
Approach LOS			В				
Intersection Summary							
Average Delay			7.4				
Intersection Capacity Uti	ilization		48.6%	IC	CU Leve	l of Servic	е
Analysis Period (min)			15				
			-				

Estelle Street DevelopmentHCM Unsignalized Intersection Capacity Analysis4: Moonlight Beach Rd/Moonlight Ave & Bancfroft DrBackground (2029) AM Peak Hour

	≯	+	*	4	+	•	•	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	18	41	2	0	111	24	5	0	0	16	1	27
Future Volume (vph)	18	41	2	0	111	24	5	0	0	16	1	27
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Hourly flow rate (vph)	21	47	2	0	128	28	6	0	0	18	1	31
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	70	156	6	50								
Volume Left (vph)	21	0	6	18								
Volume Right (vph)	2	28	0	31								
Hadj (s)	0.15	-0.02	0.20	-0.03								
Departure Headway (s)	4.3	4.1	4.7	4.4								
Degree Utilization, x	0.08	0.18	0.01	0.06								
Capacity (veh/h)	810	866	727	771								
Control Delay (s)	7.7	8.0	7.7	7.7								
Approach Delay (s)	7.7	8.0	7.7	7.7								
Approach LOS	А	А	А	А								
Intersection Summary												
Delay			7.8									
Level of Service			А									
Intersection Capacity Uti	lization		24.0%	[(CU Leve	el of Ser	vice		А			
Analysis Period (min)			15									

А

Intersection	
THEISECHOL	

Intersection Delay, s/veh 7.9 Intersection LOS

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		÷			\$			\$			\$	
Traffic Vol, veh/h	18	41	2	0	111	24	5	0	0	16	1	27
Future Vol, veh/h	18	41	2	0	111	24	5	0	0	16	1	27
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles, %	13	4	0	0	6	0	0	0	0	15	0	17
Mvmt Flow	21	47	2	0	128	28	6	0	0	18	1	31
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB				WB		NB			SB		
Opposing Approach	WB				EB		SB			NB		
Opposing Lanes	1				1		1			1		
Conflicting Approach Left	SB				NB		EB			WB		
Conflicting Lanes Left	1				1		1			1		
Conflicting Approach Rig	ht NB				SB		WB			EB		
Conflicting Lanes Right	1				1		1			1		
HCM Control Delay	7.9				8		7.7			7.6		
HCM LOS	Α				А		Α			Α		

Lane	NBLn1	EBLn1\	VBLn1	SBLn1	
Vol Left, %	100%	30%	0%	36%	
Vol Thru, %	0%	67%	82%	2%	
Vol Right, %	0%	3%	18%	61%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	5	61	135	44	
LT Vol	5	18	0	16	
Through Vol	0	41	111	1	
RT Vol	0	2	24	27	
Lane Flow Rate	6	70	155	51	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.007	0.085	0.174	0.061	
Departure Headway (Hd)	4.656	4.377	4.046	4.363	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	773	811	880	826	
Service Time	2.657	2.444	2.102	2.363	
HCM Lane V/C Ratio	0.008	0.086	0.176	0.062	
HCM Control Delay	7.7	7.9	8	7.6	
HCM Lane LOS	A	Α	А	А	
HCM 95th-tile Q	0	0.3	0.6	0.2	

> → ← < > √

Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		र्स	el el		¥			
Traffic Volume (veh/h)	2	65	157	6	1	5		
Future Volume (Veh/h)	2	65	157	6	1	5		
Sign Control		Free	Free		Stop			
Grade		0%	0%		0%			
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93		
Hourly flow rate (vph)	2	70	169	6	1	5		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type		None	None					
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	175				246	172		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	175				246	172		
tC, single (s)	4.1				6.9	6.2		
tC, 2 stage (s)								
tF (s)	2.2				4.0	3.3		
p0 queue free %	100				100	99		
cM capacity (veh/h)	1414				648	877		
			SP 1					
Direction, Lane #	EB 1	WB 1	SB 1					
Volume Total	72	175	6					
Volume Left	2	0	1					
Volume Right	0	6	5					
cSH Valume te Conceitu	1414	1700	828					
Volume to Capacity	0.00	0.10	0.01					
Queue Length 95th (m)	0.0	0.0	0.2					
Control Delay (s)	0.2	0.0	9.4					
Lane LOS	A	0.0	A					
Approach Delay (s)	0.2	0.0	9.4					
Approach LOS			A					
Intersection Summary								
Average Delay			0.3					
Intersection Capacity Uti	ilization		18.6%	IC	CU Leve	l of Serv	се	А
Analysis Period (min)			15					
,								

	≯	-	\mathbf{r}	4	+	•	1	Ť	1	ţ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	ሻ	- † †	1	ሻ	- † †	1	٦	el 👘	٦	†	1	
Traffic Volume (vph)	86	1277	281	92	886	41	115	25	135	95	286	
Future Volume (vph)	86	1277	281	92	886	41	115	25	135	95	286	
Lane Group Flow (vph)	91	1359	299	98	943	44	122	176	144	101	304	
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	NA	Perm	
Protected Phases		4		3	8			2		6		
Permitted Phases	4		4	8		8	2		6		6	
Detector Phase	4	4	4	3	8	8	2	2	6	6	6	
Switch Phase												
Minimum Initial (s)	30.0	30.0	30.0	5.0	30.0	30.0	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	37.9	37.9	37.9	9.0	37.9	37.9	27.8	27.8	27.8	27.8	27.8	
Total Split (s)	67.9	67.9	67.9	16.0	83.9	83.9	31.8	31.8	31.8	31.8	31.8	
Total Split (%)		58.7%		13.8%	72.5%					27.5%	27.5%	
Yellow Time (s)	5.9	5.9	5.9	3.0	5.9	5.9	3.6	3.6	3.6	3.6	3.6	
All-Red Time (s)	2.0	2.0	2.0	1.0	2.0	2.0	3.2	3.2	3.2	3.2	3.2	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.9	7.9	7.9	4.0	7.9	7.9	6.8	6.8	6.8	6.8	6.8	
Lead/Lag	Lag	Lag	Lag	Lead								
Lead-Lag Optimize?	Yes	Yes	Yes	Yes								
Recall Mode	Max	Max	Max	None	Max	Max	None	None	None	None	None	
v/c Ratio	0.27	0.65	0.28	0.37	0.40	0.04	0.54	0.44	0.82	0.31	0.73	
Control Delay	15.4	17.9	2.2	9.0	8.2	2.8	50.3	12.9	76.6	41.7	30.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	15.4	17.9	2.2	9.0	8.2	2.8	50.3	12.9	76.6	41.7	30.1	
Queue Length 50th (m)	9.6	102.7	0.0	5.7	43.4	0.5	25.3	5.2	31.5	20.1	29.5	
Queue Length 95th (m)	23.4	147.7	12.7	12.5	64.0	4.6	44.7	24.4	#58.5	36.1	61.3	
Internal Link Dist (m)		516.5			440.7			737.0		303.0		
Turn Bay Length (m)	59.0		94.0	30.0		1.0	100.0		75.0			
Base Capacity (vph)	340	2088	1056	331	2385	1131	300	484	235	433	496	
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.27	0.65	0.28	0.30	0.40	0.04	0.41	0.36	0.61	0.23	0.61	
Intersection Summary												

Cycle Length: 115.7

Actuated Cycle Length: 109.8

Natural Cycle: 75

Control Type: Semi Act-Uncoord

95th percentile volume exceeds capacity, queue may be longer. # Queue shown is maximum after two cycles.

Splits and Phases: 1: Levesque St/Street 'C' & Kingsway

	√ Ø3	₩ Ø4
31.8 s	16 s	67.9 s
	Ø8	
31.8 s	83.9 s	

JD Engineering

Synchro 10 Report 03-05-2021

	٦	-	\mathbf{F}	4	←	•	1	1	۲	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	- † †	1	ሻ	- † †	1	<u>۲</u>	eî 👘		ሻ	↑	1
Traffic Volume (vph)	86	1277	281	92	886	41	115	25	140	135	95	286
Future Volume (vph)	86	1277	281	92	886	41	115	25	140	135	95	286
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.9	7.9	7.9	4.0	7.9	7.9	6.8	6.8		6.8	6.8	6.8
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.87		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1805	3539	1583	1736	3438	1615	1805	1618		1805	1900	1615
Flt Permitted	0.30	1.00	1.00	0.13	1.00	1.00	0.69	1.00		0.54	1.00	1.00
Satd. Flow (perm)	576	3539	1583	229	3438	1615	1314	1618		1029	1900	1615
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	91	1359	299	98	943	44	122	27	149	144	101	304
RTOR Reduction (vph)	0	0	123	0	0	11	0	123	0	0	0	137
Lane Group Flow (vph)	91	1359	176	98	943	33	122	53	0	144	101	167
Heavy Vehicles (%)	0%	2%	2%	4%	5%	0%	0%	0%	3%	0%	0%	0%
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	Perm	NA		Perm	NA	Perm
Protected Phases		4		3	8			2			6	
Permitted Phases	4		4	8		8	2			6		6
Actuated Green, G (s)	64.8	64.8	64.8	76.2	76.2	76.2	18.9	18.9		18.9	18.9	18.9
Effective Green, g (s)	64.8	64.8	64.8	76.2	76.2	76.2	18.9	18.9		18.9	18.9	18.9
Actuated g/C Ratio	0.59	0.59	0.59	0.69	0.69	0.69	0.17	0.17		0.17	0.17	0.17
Clearance Time (s)	7.9	7.9	7.9	4.0	7.9	7.9	6.8	6.8		6.8	6.8	6.8
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	339	2088	934	260	2385	1120	226	278		177	327	277
v/s Ratio Prot		c0.38		0.03	c0.27			0.03			0.05	
v/s Ratio Perm	0.16		0.11	0.24		0.02	0.09			c0.14		0.10
v/c Ratio	0.27	0.65	0.19	0.38	0.40	0.03	0.54	0.19		0.81	0.31	0.60
Uniform Delay, d1	11.0	15.0	10.4	9.6	7.1	5.2	41.5	38.9		43.8	39.7	42.0
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	1.9	1.6	0.4	0.9	0.5	0.0	2.5	0.3		24.0	0.5	3.7
Delay (s)	12.9	16.6	10.8	10.5	7.6	5.3	44.0	39.2		67.8	40.3	45.7
Level of Service	В	B	В	В	A	A	D	D		E	D	D
Approach Delay (s)		15.4			7.7			41.2			50.5	
Approach LOS		В			A			D			D	
Intersection Summary					1014.00	00.1						
HCM 2000 Control Dela			20.5	F		UU Leve	l of Serv	/Ice	С			
HCM 2000 Volume to C		ratio	0.67	_		4 4!	(-)		40.7			
Actuated Cycle Length (109.8			ost time			18.7			
Intersection Capacity Ut	ilization		91.9%	10	CU Leve	el of Sei	vice		F			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	-	\rightarrow	4	+	•	•	1	1	Ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	††	1	۲	††	1	۲	4	ሻ	eî 👘	
Traffic Volume (vph)	15	1527	78	30	1070	11	39	6	11	4	
Future Volume (vph)	15	1527	78	30	1070	11	39	6	11	4	
Lane Group Flow (vph)	16	1678	86	33	1176	12	43	48	12	36	
• • • • •	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	NA	
Protected Phases	7	4		3	8			2		6	
Permitted Phases	4		4	8		8	2		6		
Detector Phase	7	4	4	3	8	8	2	2	6	6	
Switch Phase											
Minimum Initial (s)	5.0	30.0	30.0	5.0	30.0	30.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	10.0	37.9	37.9	10.0	37.9	37.9	30.7	30.7	30.7	30.7	
Total Split (s)	20.0	67.9	67.9	20.0	67.9	67.9	31.7	31.7	31.7	31.7	
Total Split (%)	16.7%	56.8%	56.8%	16.7%	56.8%	56.8%	26.5%	26.5%	26.5%	26.5%	
Yellow Time (s)	3.0	5.9	5.9	3.0	5.9	5.9	4.1	4.1	4.1	4.1	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.6	2.6	2.6	2.6	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7	6.7	6.7	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag					
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes					
Recall Mode	None	Max	Max	None	Max	Max	None	None	None	None	
v/c Ratio	0.04	0.66	0.07	0.14	0.45	0.01	0.32	0.24	0.11	0.21	
Control Delay	2.9	11.6	2.2	3.9	7.4	0.0	46.7	18.4	41.2	18.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	2.9	11.6	2.2	3.9	7.4	0.0	46.7	18.4	41.2	18.7	
Queue Length 50th (m)	0.5	105.1	0.5	1.1	35.1	0.0	7.8	1.2	2.1	0.7	
Queue Length 95th (m)	2.0	151.4	6.1	3.3	82.7	0.0	18.8	11.9	7.8	10.0	
Internal Link Dist (m)		440.7			446.3			949.6		204.9	
Turn Bay Length (m)	40.0		22.0	42.0		51.0	20.0		14.0		
Base Capacity (vph)	525	2534	1177	395	2595	1238	375	475	314	430	
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.03	0.66	0.07	0.08	0.45	0.01	0.11	0.10	0.04	0.08	
Intersection Summary											
Cycle Length: 119.6											
Actuated Cycle Length:	93.2										
Natural Cycle: 90											
Control Type: Semi Act-	Uncoor	ď									
Splits and Dhases 2.	Moonli	aht Ava	& King								
Splits and Phases: 2:		ynt Ave	& Kings	sway							

₫ <i>ø</i> 2	√ Ø3	₩Ø4	
31.7 s	20 s	67.9 s	
↓ Ø6			
31.7 s	20 s	67.9 s	

	≯	-	\rightarrow	4	+	•	1	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	<u></u>	1	ኘ	<u></u>	1	1	eî 👘		1	eî	
Traffic Volume (vph)	15	1527	78	30	1070	11	39	6	37	11	4	29
Future Volume (vph)	15	1527	78	30	1070	11	39	6	37	11	4	29
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7		6.7	6.7	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.87		1.00	0.87	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1687	3471	1583	1736	3438	1615	1805	1657		1530	1512	
Flt Permitted	0.22	1.00	1.00	0.10	1.00	1.00	0.73	1.00		0.73	1.00	
Satd. Flow (perm)	388	3471	1583	176	3438	1615	1394	1657		1169	1512	
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	16	1678	86	33	1176	12	43	7	41	12	4	32
RTOR Reduction (vph)	0	0	25	0	0	4	0	38	0	0	30	0
Lane Group Flow (vph)	16	1678	61	33	1176	8	43	10	0	12	6	0
Heavy Vehicles (%)	7%	4%	2%	4%	5%	0%	0%	0%	0%	18%	0%	10%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8		8	2			6		
Actuated Green, G (s)	69.6	67.3	67.3	72.2	68.6	68.6	7.3	7.3		7.3	7.3	
Effective Green, g (s)	69.6	67.3	67.3	72.2	68.6	68.6	7.3	7.3		7.3	7.3	
Actuated g/C Ratio	0.71	0.69	0.69	0.74	0.70	0.70	0.07	0.07		0.07	0.07	
Clearance Time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7		6.7	6.7	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	306	2388	1089	187	2411	1132	104	123		87	112	
v/s Ratio Prot	0.00	c0.48		c0.01	0.34			0.01			0.00	
v/s Ratio Perm	0.04		0.04	0.12		0.01	c0.03			0.01		
v/c Ratio	0.05	0.70	0.06	0.18	0.49	0.01	0.41	0.08		0.14	0.06	
Uniform Delay, d1	4.3	9.2	4.9	6.4	6.6	4.4	43.2	42.1		42.3	42.1	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.1	1.8	0.1	0.5	0.7	0.0	2.7	0.3		0.7	0.2	
Delay (s)	4.4	11.0	5.0	6.9	7.3	4.4	45.9	42.4		43.0	42.3	
Level of Service	A	В	A	A	A	A	D	D		D	D	
Approach Delay (s)		10.6			7.3			44.0			42.5	
Approach LOS		В			A			D			D	
Intersection Summary												
HCM 2000 Control Dela			10.8	F	ICM 20	00 Leve	l of Serv	lice	В			
HCM 2000 Volume to C		ratio	0.65	-								
Actuated Cycle Length	• •		97.8			ost time			19.6			
Intersection Capacity U	lization		63.2%	10	CU Leve	el of Sei	vice		В			
Analysis Period (min)			15									
c Critical Lane Group												

Estelle Street Development 3: Bancfroft Dr & Levesque St

	≯	-	+	•	1	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		र्स	ef 👘		۲		
Traffic Volume (veh/h)	146	127	63	25	61	222	
Future Volume (Veh/h)	146	127	63	25	61	222	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80	
Hourly flow rate (vph)	183	159	79	31	76	278	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	110				620	94	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	110				620	94	
tC, single (s)	4.1				6.5	6.2	
tC, 2 stage (s)							
tF (s)	2.2				3.6	3.3	
p0 queue free %	88				80	71	
cM capacity (veh/h)	1493				388	965	
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	342	110	354				
Volume Left	183	0	76				
Volume Right	0	31	278				
cSH	1493	1700	732				
Volume to Capacity	0.12	0.06	0.48				
Queue Length 95th (m)	3.3	0.0	21.3				
Control Delay (s)	4.6	0.0	14.4				
Lane LOS	А		В				
Approach Delay (s)	4.6	0.0	14.4				
Approach LOS			В				
Intersection Summary							
Average Delay			8.3				
Intersection Capacity Uti	ilization		45.2%	IC	CU Leve	el of Servio	е
Analysis Period (min)			15				
·····)							

Estelle Street DevelopmentHCM Unsignalized Intersection Capacity Analysis4: Moonlight Beach Rd/Moonlight Ave & Bancfroft DrBackground (2029) PM Peak Hour

	≯	+	\mathbf{r}	4	+	×	•	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			4			\$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	60	112	2	3	55	9	8	6	3	38	3	35
Future Volume (vph)	60	112	2	3	55	9	8	6	3	38	3	35
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Hourly flow rate (vph)	70	130	2	3	64	10	9	7	3	44	3	41
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	202	77	19	88								
Volume Left (vph)	70	3	9	44								
Volume Right (vph)	2	10	3	41								
Hadj (s)	0.06	-0.07	0.00	-0.10								
Departure Headway (s)	4.3	4.3	4.6	4.5								
Degree Utilization, x	0.24	0.09	0.02	0.11								
Capacity (veh/h)	815	797	720	752								
Control Delay (s)	8.7	7.7	7.8	8.0								
Approach Delay (s)	8.7	7.7	7.8	8.0								
Approach LOS	А	А	А	А								
Intersection Summary												
Delay			8.3									
Level of Service			А									
Intersection Capacity Uti	lization		28.4%](CU Lev	el of Ser	vice		А			
Analysis Period (min)			15									

Intersection	ו		

А

Intersection Delay, s/veh 8.2 Intersection LOS

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			4			\$			\$	
Traffic Vol, veh/h	60	112	2	3	55	9	8	6	3	38	3	35
Future Vol, veh/h	60	112	2	3	55	9	8	6	3	38	3	35
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	3	0	7
Mvmt Flow	70	130	2	3	64	10	9	7	3	44	3	41
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Lef	t SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Rig	jht NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	8.6			7.7			7.7			8		
HCM LOS	А			А			А			А		

Lane	NBLn1	EBLn1V	VBLn1	SBLn1	
Vol Left, %	47%	34%	4%	50%	
Vol Thru, %	35%	64%	82%	4%	
Vol Right, %	18%	1%	13%	46%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	17	174	67	76	
LT Vol	8	60	3	38	
Through Vol	6	112	55	3	
RT Vol	3	2	9	35	
Lane Flow Rate	20	202	78	88	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.025	0.237	0.093	0.109	
Departure Headway (Hd)	4.619	4.212	4.29	4.424	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	778	840	838	814	
Service Time	2.628	2.306	2.301	2.43	
HCM Lane V/C Ratio	0.026	0.24	0.093	0.108	
HCM Control Delay	7.7	8.6	7.7	8	
HCM Lane LOS	A	Α	А	А	
HCM 95th-tile Q	0.1	0.9	0.3	0.4	

	≯	+	Ļ	•	1			
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		र्स	ef 🔰		Y			
Traffic Volume (veh/h)	6	182	83	4	1	0		
Future Volume (Veh/h)	6	182	83	4	1	0		
Sign Control		Free	Free		Stop			
Grade		0%	0%		0%			
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94		
Hourly flow rate (vph)	6	194	88	4	1	0		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type		None	None					
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	92				296	90		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	92				296	90		
tC, single (s)	4.1				6.4	6.2		
tC, 2 stage (s)								
tF (s)	2.2				3.5	3.3		
p0 queue free %	100				100	100		
cM capacity (veh/h)	1515				697	973		
Direction, Lane #	EB 1	WB 1	SB 1					
Volume Total	200	92	1					
Volume Left	6	0	1					
Volume Right	0	4	0					
cSH	1515	1700	697					
Volume to Capacity	0.00	0.05	0.00					
Queue Length 95th (m)	0.00	0.0	0.0					
Control Delay (s)	0.3	0.0	10.2					
Lane LOS	A	0.0	B					
Approach Delay (s)	0.3	0.0	10.2					
Approach LOS	0.0	0.0	10.2 B					
Intersection Summary								
			0.2					
Average Delay Intersection Capacity Uti	ilization			17		el of Serv	ico	٨
	mzation		24.4%	IC	JU Leve	er or Serv		A
Analysis Period (min)			15					

Estelle Street Development Tulloch Engineering Inc. JDE-20112 Date: March 5th, 2021

Appendix F – Synchro Analysis Output – Total Traffic Volumes

	≯	-	\mathbf{r}	4	-	•	1	t	1	ţ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	<u>ل</u>	<u></u>	1	ľ	<u></u>	1	ľ	લે	ľ	•	1	
Traffic Volume (vph)	185	439	117	120	1078	163	352	111	59	31	44	
Future Volume (vph)	185	439	117	120	1078	163	352	111	59	31	44	
Lane Group Flow (vph)	206	488	130	133	1198	181	391	251	66	34	49	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	NA	Perm	
Protected Phases	7	4		3	8		5	2		6		
Permitted Phases	4		4	8		8	2		6		6	
Detector Phase	7	4	4	3	8	8	5	2	6	6	6	
Switch Phase												
Minimum Initial (s)	4.5	30.0	30.0	5.0	30.0	30.0	4.5	8.0	8.0	8.0	8.0	
Minimum Split (s)	9.0	37.9	37.9	9.0	37.9	37.9	9.0	27.8	27.8	27.8	27.8	
Total Split (s)	15.0	61.0	61.0	9.0	55.0	55.0	25.0	53.0	28.0	28.0	28.0	
Total Split (%)	12.2%	49.6%	49.6%	7.3%	44.7%	44.7%	20.3%	43.1%	22.8%	22.8%	22.8%	
Yellow Time (s)	3.0	5.9	5.9	3.0	5.9	5.9	3.0	3.6	3.6	3.6	3.6	
All-Red Time (s)	1.0	2.0	2.0	1.0	2.0	2.0	1.0	3.2	3.2	3.2	3.2	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.0	7.9	7.9	4.0	7.9	7.9	4.0	6.8	6.8	6.8	6.8	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead		Lag	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	
Recall Mode	None	Max	Max	None	Max	Max	None	None	None	None	None	
v/c Ratio	0.80	0.30	0.15	0.27	0.83	0.24	0.83	0.46	0.53	0.16	0.16	
Control Delay	44.6	19.3	3.7	13.9	35.5	7.3	48.1	26.9	63.4	47.4	1.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	44.6	19.3	3.7	13.9	35.5	7.3	48.1	26.9	63.4	47.4	1.1	
Queue Length 50th (m)	26.6	36.5	0.0	13.3		5.7	75.6	36.5	14.9	7.4	0.0	
Queue Length 95th (m)	#74.4	53.7	11.3	25.6	#188.2	21.3	108.5	59.9	29.9	17.3	0.0	
Internal Link Dist (m)		516.5			440.7			737.0		303.0		
Turn Bay Length (m)	59.0		94.0	30.0		1.0	100.0		75.0			
Base Capacity (vph)	257	1604	849	501	1449	767	480	753	221	367	433	
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0		0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.80	0.30	0.15	0.27	0.83	0.24	0.81	0.33	0.30	0.09	0.11	
Intersection Summary												
Cycle Length: 123												
Actuated Cycle Length:	110 5											

Actuated Cycle Length: 110.5

Natural Cycle: 85

Control Type: Semi Act-Uncoord

95th percentile volume exceeds capacity, queue may be longer.Queue shown is maximum after two cycles.

Splits and Phases: 1: Levesque St/Street 'C' & Kingsway

₫ ø2		√ Ø3 →	1 Ø4
53 s		9s 61	S
▲ ø5	₽ Ø6		- ∲ ▼ Ø8
25 s	28 s	15 s	55 s

JD Engineering

	٦	-	\rightarrow	4	-	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	- † †	1	ľ	<u></u>	1	1	eî		ľ	•	1
Traffic Volume (vph)	185	439	117	120	1078	163	352	111	115	59	31	44
Future Volume (vph)	185	439	117	120	1078	163	352	111	115	59	31	44
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	7.9	7.9	4.0	7.9	7.9	4.0	6.8		6.8	6.8	6.8
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.92		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1719	3312	1615	1805	3374	1599	1787	1720		1805	1900	1615
Flt Permitted	0.09	1.00	1.00	0.47	1.00	1.00	0.53	1.00		0.60	1.00	1.00
Satd. Flow (perm)	170	3312	1615	901	3374	1599	993	1720		1147	1900	1615
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	206	488	130	133	1198	181	391	123	128	66	34	49
RTOR Reduction (vph)	0	0	68	0	0	81	0	34	0	0	0	45
Lane Group Flow (vph)	206	488	62	133	1198	100	391	217	0	66	34	4
Heavy Vehicles (%)	5%	9%	0%	0%	7%	1%	1%	0%	4%	0%	0%	0%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm
Protected Phases	7	4		3	8		5	2			6	
Permitted Phases	4		4	8		8	2			6		6
Actuated Green, G (s)	62.6	53.6	53.6	52.5	47.5	47.5	34.7	34.7		10.2	10.2	10.2
Effective Green, g (s)	62.6	53.6	53.6	52.5	47.5	47.5	34.7	34.7		10.2	10.2	10.2
Actuated g/C Ratio	0.56	0.48	0.48	0.47	0.42	0.42	0.31	0.31		0.09	0.09	0.09
Clearance Time (s)	4.0	7.9	7.9	4.0	7.9	7.9	4.0	6.8		6.8	6.8	6.8
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	248	1585	772	462	1430	678	452	532		104	173	147
v/s Ratio Prot	c0.08	0.15		0.01	0.36		c0.16	0.13			0.02	
v/s Ratio Perm	c0.38		0.04	0.12		0.06	c0.11			0.06		0.00
v/c Ratio	0.83	0.31	0.08	0.29	0.84	0.15	0.87	0.41		0.63	0.20	0.03
Uniform Delay, d1	24.8	17.9	15.8	17.1	28.8	19.8	34.5	30.5		49.1	47.1	46.4
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	20.4	0.5	0.2	0.3	6.0	0.5	15.7	0.5		12.0	0.6	0.1
Delay (s)	45.2	18.4	16.0	17.4	34.8	20.3	50.2	31.1		61.1	47.7	46.5
Level of Service	D	B	В	В	C	С	D	C		E	D	D
Approach Delay (s)		24.7			31.5			42.7			53.2	
Approach LOS		С			С			D			D	
Intersection Summary			22.4		ICM 20	001.01		<i>i</i>	С			
HCM 2000 Control Dela HCM 2000 Volume to C		ratio	33.1 0.90	Г		UU Leve	el of Serv	lice	U			
		ralio		c	um of l	oot time	(a)		22.7			
Actuated Cycle Length Intersection Capacity U			112.0 85.1%		Sum of le CU Leve				22.7 E			
Analysis Period (min)	unzation		o5.1%	ľ		510138	IVICE		E			
c Critical Lane Group			15									
C Childai Lane Group												

	≯	-	\mathbf{r}	4	+	•	1	t	1	ŧ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	^	1	ሻ	††	1	٦	¢Î	ሻ	eî 👘	
Traffic Volume (vph)	29	631	35	14	1435	10	58	5	3		
Future Volume (vph)	29	631	35	14	1435	10	58	5	3	1	
Lane Group Flow (vph)	34	734	41	16	1669	12	67	46	3	16	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	NA	
Protected Phases	7	4		3	8			2		6	
Permitted Phases	4		4	8		8	2		6		
Detector Phase	7	4	4	3	8	8	2	2	6	6	
Switch Phase											
Minimum Initial (s)	5.0	30.0	30.0	5.0	30.0	30.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	10.0	37.9	37.9	10.0	37.9	37.9	30.7	30.7	30.7	30.7	
Total Split (s)	20.0	67.9	67.9	20.0	67.9	67.9	31.7	31.7	31.7	31.7	
Total Split (%)	16.7%	56.8%	56.8%	16.7%	56.8%	56.8%	26.5%	26.5%	26.5%	26.5%	
Yellow Time (s)	3.0	5.9	5.9	3.0	5.9	5.9	4.1	4.1	4.1	4.1	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.6	2.6	2.6	2.6	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7	6.7	6.7	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag					
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes					
Recall Mode	None	Max	Max	None	Max	Max	None	None	None	None	
v/c Ratio	0.19	0.30	0.04	0.03	0.68	0.01	0.44	0.21	0.03	0.11	
Control Delay	5.6	6.7	0.5	3.3	13.0	0.0	50.0	17.3	39.0	20.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	5.6	6.7	0.5	3.3	13.0	0.0	50.0	17.3	39.0	20.5	
Queue Length 50th (m)	1.2	20.3	0.0	0.6	113.5	0.0	12.5	1.1	0.6	0.2	
Queue Length 95th (m)	3.7	46.2	0.8	2.2	151.6	0.0	24.9	10.6	3.1	5.9	
Internal Link Dist (m)		440.7			446.3			949.6		204.9	
Turn Bay Length (m)	40.0		22.0	42.0		51.0	20.0		14.0		
Base Capacity (vph)	285	2472	977	742	2472	990	367	466	218	327	
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.12	0.30	0.04	0.02	0.68	0.01	0.18	0.10	0.01	0.05	
Intersection Summary											
Cycle Length: 119.6											
Actuated Cycle Length:	94.9										
Natural Cycle: 90											
Control Type: Semi Act-	Uncoor	ď									
Colito and Dhasses	Mosel	abt Av-	0 1/1								
Splits and Phases: 2:	ivioonii	yni Ave	& King	sway							
1. 本章		~		- I							

₫ <i>ø</i> 2	√ Ø3	₩ Ø4	
31.7 s	20 s	67.9 s	
		◆ ▼ Ø8	
31.7 s	20 s	67.9 s	

	٦	-	\rightarrow	🖌 🖛 🔨 🕇						1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	<u>†</u> †	1	۲	<u></u>	1	۲	eî 👘		۲	ef 🔰	
Traffic Volume (vph)	29	631	35	14	1435	10	58	5	34	3	1	13
Future Volume (vph)	29	631	35	14	1435	10	58	5	34	3	1	13
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7		6.7	6.7	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.87		1.00	0.86	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1280	3312	1282	1805	3438	1346	1770	1652		1081	1196	
Flt Permitted	0.09	1.00	1.00	0.37	1.00	1.00	0.75	1.00		0.73	1.00	
Satd. Flow (perm)	128	3312	1282	708	3438	1346	1392	1652		827	1196	
Peak-hour factor, PHF	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Adj. Flow (vph)	34	734	41	16	1669	12	67	6	40	3	1	15
RTOR Reduction (vph)	0	0	13	0	0	4	0	37	0	0	14	0
Lane Group Flow (vph)	34	734	28	16	1669	8	67	9	0	3	2	0
Heavy Vehicles (%)	41%	9%	26%	0%	5%	20%	2%	0%	0%	67%	0%	39%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8		8	2			6		
Actuated Green, G (s)	72.9	69.0	69.0	69.7	67.4	67.4	8.5	8.5		8.5	8.5	
Effective Green, g (s)	72.9	69.0	69.0	69.7	67.4	67.4	8.5	8.5		8.5	8.5	
Actuated g/C Ratio	0.73	0.69	0.69	0.70	0.68	0.68	0.09	0.09		0.09	0.09	
Clearance Time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7		6.7	6.7	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	139	2299	889	521	2331	912	119	141		70	102	
v/s Ratio Prot	c0.01	0.22		0.00	c0.49			0.01			0.00	
v/s Ratio Perm	0.17		0.02	0.02		0.01	c0.05			0.00		
v/c Ratio	0.24	0.32	0.03	0.03	0.72	0.01	0.56	0.07		0.04	0.02	
Uniform Delay, d1	7.2	6.0	4.8	4.5	10.0	5.2	43.7	41.8		41.7	41.6	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.9	0.4	0.1	0.0	1.9	0.0	6.0	0.2		0.3	0.1	
Delay (s)	8.1	6.3	4.8	4.5	11.9	5.2	49.6	42.0		42.0	41.7	
Level of Service	А	Α	A	A	В	A	D	D		D	D	
Approach Delay (s)		6.3			11.8			46.5			41.8	
Approach LOS		A			В			D			D	
Intersection Summary									_			
HCM 2000 Control Dela			11.8	F	ICM 20	00 Leve	l of Serv	/ice	В			
HCM 2000 Volume to C		ratio	0.68	_								
Actuated Cycle Length			99.4		Sum of l				19.6			
Intersection Capacity U	tilization		61.7%		CU Lev	el of Sei	rvice		В			
Analysis Period (min)			15									
c Critical Lane Group												

Estelle Street Development 3: Bancfroft Dr & Levesque St

	≯	-	+	*	1	<			
Movement	EBL	EBT	WBT	WBR	SBL	SBR			
Lane Configurations		र्स	4Î		- M				
Traffic Volume (veh/h)	273	31	94	71	30	158			
Future Volume (Veh/h)	273	31	94	71	30	158			
Sign Control		Free	Free		Stop				
Grade		0%	0%		0%				
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90			
Hourly flow rate (vph)	303	34	104	79	33	176			
Pedestrians									
Lane Width (m)									
Walking Speed (m/s)									
Percent Blockage									
Right turn flare (veh)									
Median type		None	None						
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
vC, conflicting volume	183				784	144			
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	183				784	144			
tC, single (s)	4.2				6.4	6.2			
tC, 2 stage (s)									
tF (s)	2.3				3.5	3.3			
p0 queue free %	78				88	80			
cM capacity (veh/h)	1368				284	899			
Direction, Lane #	EB 1	WB 1	SB 1						
Volume Total	337	183	209						
Volume Left	303	0	33						
Volume Right	0	79	176						
cSH	1368	1700	670						
Volume to Capacity	0.22	0.11	0.31						
Queue Length 95th (m)	6.8	0.0	10.6						
Control Delay (s)	7.7	0.0	12.8						
Lane LOS		0.0	12.0 B						
	A 7.7	0.0	в 12.8						
Approach Delay (s)	1.1	0.0							
Approach LOS			В						
Intersection Summary									
Average Delay			7.2						
Intersection Capacity Uti	ilization		47.4%	10	CU Leve	el of Servi	ce	А	
Analysis Period (min)			15						

Estelle Street DevelopmentHCM Unsignalized Intersection Capacity Analysis4: Moonlight Beach Rd/Moonlight Ave & Bancfroft DrTotal (2024) AM Peak Hour

	۶	→	\mathbf{F}	4	+	*	1	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	17	40	2	0	108	22	4	0	0	15	1	25
Future Volume (vph)	17	40	2	0	108	22	4	0	0	15	1	25
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Hourly flow rate (vph)	20	46	2	0	124	25	5	0	0	17	1	29
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	68	149	5	47								
Volume Left (vph)	20	0	5	17								
Volume Right (vph)	2	25	0	29								
Hadj (s)	0.15	-0.02	0.20	-0.03								
Departure Headway (s)	4.3	4.1	4.6	4.4								
Degree Utilization, x	0.08	0.17	0.01	0.06								
Capacity (veh/h)	814	868	732	785								
Control Delay (s)	7.7	7.9	7.7	7.6								
Approach Delay (s)	7.7	7.9	7.7	7.6								
Approach LOS	А	А	А	А								
Intersection Summary												
Delay			7.8									
Level of Service			А									
Intersection Capacity Uti	lization		23.7%	[(CU Lev	el of Ser	vice		А			
Analysis Period (min)			15									

А

Intersection

Intersection Delay, s/veh Intersection LOS 7.8

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			÷	
Traffic Vol, veh/h	17	40	2	0	108	22	4	0	0	15	1	25
Future Vol, veh/h	17	40	2	0	108	22	4	0	0	15	1	25
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles, %	13	4	0	0	6	0	0	0	0	15	0	17
Mvmt Flow	20	46	2	0	124	25	5	0	0	17	1	29
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB				WB		NB			SB		
Opposing Approach	WB				EB		SB			NB		
Opposing Lanes	1				1		1			1		
Conflicting Approach Left	SB				NB		EB			WB		
Conflicting Lanes Left	1				1		1			1		
Conflicting Approach Rig	ht NB				SB		WB			EB		
Conflicting Lanes Right	1				1		1			1		
HCM Control Delay	7.8				7.9		7.7			7.6		
HCM LOS	Α				А		Α			Α		

Lane	NBLn1	EBLn1V	VBLn1	SBLn1	
Vol Left, %	100%	29%	0%	37%	
Vol Thru, %	0%	68%	83%	2%	
Vol Right, %	0%	3%	17%	61%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	4	59	130	41	
LT Vol	4	17	0	15	
Through Vol	0	40	108	1	
RT Vol	0	2	22	25	
Lane Flow Rate	5	68	149	47	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.006	0.082	0.168	0.057	
Departure Headway (Hd)	4.634	4.362	4.042	4.348	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	777	814	882	828	
Service Time	2.636	2.427	2.094	2.348	
HCM Lane V/C Ratio	0.006	0.084	0.169	0.057	
HCM Control Delay	7.7	7.8	7.9	7.6	
HCM Lane LOS	A	А	А	А	
HCM 95th-tile Q	0	0.3	0.6	0.2	

	≯	+	Ļ	*	1	~			
Movement	EBL	EBT	WBT	WBR	SBL	SBR			
Lane Configurations		ب ا	el el		Y				
Traffic Volume (veh/h)	3	61	149	7	2	12			
Future Volume (Veh/h)	3	61	149	7	2	12			
Sign Control		Free	Free		Stop				
Grade		0%	0%		0%				
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93			
Hourly flow rate (vph)	3	66	160	8	2	13			
Pedestrians									
Lane Width (m)									
Walking Speed (m/s)									
Percent Blockage									
Right turn flare (veh)									
Median type		None	None						
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
vC, conflicting volume	168				236	164			
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	168				236	164			
tC, single (s)	4.1				6.9	6.2			
tC, 2 stage (s)									
tF (s)	2.2				4.0	3.3			
p0 queue free %	100				100	99			
cM capacity (veh/h)	1422				657	886			
Direction, Lane #	EB 1	WB 1	SB 1						
Volume Total	69	168	15						
Volume Left	3	0	2						
Volume Right	0	8	13						
cSH	1422	1700	846						
Volume to Capacity	0.00	0.10	0.02						
Queue Length 95th (m)	0.1	0.0	0.4						
Control Delay (s)	0.3	0.0	9.3						
Lane LOS	A	5.5	A						
Approach Delay (s)	0.3	0.0	9.3						
Approach LOS	2.0	5.0	A						
Intersection Summary									
Average Delay			0.6						
Intersection Capacity Uti	ilization		18.3%	IC	CU Leve	el of Serv	се	А	
Analysis Period (min)			15						
J ·····)									

EBL EBR NBL NBT SBT SBR

Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	۰¥			र्स	eî 🗧			
Traffic Volume (veh/h)	9	2	1	9	12	3		
Future Volume (Veh/h)	9	2	1	9	12	3		
Sign Control	Stop			Free	Free	-		
Grade	0%			0%	0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	10	2	1	10	13	3		
Pedestrians		_	•					
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type				None	None			
Median storage veh)				None	None			
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	26	14	16					
vC1, stage 1 conf vol	20	17	10					
vC2, stage 2 conf vol								
vCu, unblocked vol	26	14	16					
tC, single (s)	6.4	6.2	4.1					
tC, 2 stage (s)	0.4	0.2	4.1					
tF (s)	3.5	3.3	2.2					
p0 queue free %	99	100	100					
cM capacity (veh/h)	993	1071	1615					
,								
Direction, Lane #	EB 1	NB 1	SB 1					
Volume Total	12	11	16					
Volume Left	10	1	0					
Volume Right	2	0	3					
cSH	1005	1615	1700					
Volume to Capacity	0.01	0.00	0.01					
Queue Length 95th (m)	0.3	0.0	0.0					
Control Delay (s)	8.6	0.7	0.0					
Lane LOS	А	А						
Approach Delay (s)	8.6	0.7	0.0					
Approach LOS	А							
Intersection Summary								
Average Delay			2.8					
Intersection Capacity Uti	lization		13.3%	I	CU Leve	el of Service	А	
Analysis Period (min)			15					

~ ٠ t Ť ٠ ↘ EBL EBR NBL NBT SBT Movement SBR **þ** 9 Lane Configurations ¥ **4** 17 Traffic Volume (veh/h) 38 6 1 13 Future Volume (Veh/h) 38 6 9 1 17 13 Sign Control Stop Free Free Grade 0% 0% 0% 0.92 0.92 0.92 0.92 0.92 Peak Hour Factor 0.92 Hourly flow rate (vph) 41 7 18 14 1 10 Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median type None None Median storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume 37 17 24 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 37 17 24 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) 2.2 3.5 3.3 tF (s) p0 queue free % 96 99 100 cM capacity (veh/h) 980 1068 1604 NB 1 Direction, Lane # EB 1 SB 1 Volume Total 48 19 24 Volume Left 41 0 1 14 Volume Right 7 0 1700 cSH 992 1604 Volume to Capacity 0.05 0.00 0.01 Queue Length 95th (m) 1.2 0.0 0.0 Control Delay (s) 8.8 0.4 0.0 Lane LOS А А Approach Delay (s) 8.8 0.4 0.0 Approach LOS A Intersection Summary Average Delay 4.7 13.3% Intersection Capacity Utilization ICU Level of Service А Analysis Period (min) 15

	٦	→	\mathbf{r}	4	+	•	1	Ť	1	Ļ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	ሻ	- † †	1	ሻ		1	٦	el 👘	ሻ	†	1	
Traffic Volume (vph)	86	1207	292	86	833	41	122	25	135	95	286	
Future Volume (vph)	86	1207	292	86	833	41	122	25	135	95	286	
Lane Group Flow (vph)	91	1284	311	91	886	44	130	165	144	101	304	
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	NA	Perm	
Protected Phases		4		3	8			2		6		
Permitted Phases	4		4	8		8	2		6		6	
Detector Phase	4	4	4	3	8	8	2	2	6	6	6	
Switch Phase												
Minimum Initial (s)	30.0	30.0	30.0	5.0	30.0	30.0	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	37.9	37.9	37.9	9.0	37.9	37.9	27.8	27.8	27.8	27.8	27.8	
Total Split (s)	67.9	67.9	67.9	16.0	83.9	83.9	31.8	31.8	31.8	31.8	31.8	
Total Split (%)		58.7%					27.5%		27.5%		27.5%	
Yellow Time (s)	5.9	5.9	5.9	3.0	5.9	5.9	3.6	3.6	3.6	3.6	3.6	
All-Red Time (s)	2.0	2.0	2.0	1.0	2.0	2.0	3.2	3.2	3.2	3.2	3.2	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.9	7.9	7.9	4.0	7.9	7.9	6.8	6.8	6.8	6.8	6.8	
Lead/Lag	Lag	Lag	Lag	Lead								
Lead-Lag Optimize?	Yes	Yes	Yes	Yes								
Recall Mode	Max	Max	Max	None	Max	Max	None	None	None	None	None	
v/c Ratio	0.24	0.59	0.29	0.31	0.37	0.04	0.59	0.43	0.80	0.32	0.71	
Control Delay	14.4	15.9	2.1	7.7	7.9	2.8	52.8	13.3	73.3	41.9	26.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	14.4	15.9	2.1	7.7	7.9	2.8	52.8	13.3	73.3	41.9	26.1	
Queue Length 50th (m)	9.3	92.0	0.0	5.1	39.0	0.5	27.2	5.2	31.3	20.1	24.3	
Queue Length 95th (m)	22.8	134.9	12.9	11.8	59.0	4.6	47.6	24.0	54.8	36.1	55.5	
Internal Link Dist (m)		516.5			440.7			737.0		303.0		
Turn Bay Length (m)	59.0		94.0	30.0		1.0	100.0		75.0			
Base Capacity (vph)	374	2170	1091	360	2394	1135	301	478	246	435	513	
Starvation Cap Reductr	n 0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.24	0.59	0.29	0.25	0.37	0.04	0.43	0.35	0.59	0.23	0.59	
Intersection Summary												
Cycle Length: 115.7												
Actuated Cycle Length:	109.4											
Natural Cycle: 75												
Control Type: Semi Act-	Uncoor	ď										

Splits and Phases: 1: Levesque St/Street 'C' & Kingsway

	√ Ø3	↓ Ø4
31.8 s	16 s	67.9 s
	₹ Ø8	
31.8 s	83.9 s	

	۶	-	\mathbf{F}	4	-	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	<u></u>	1	ľ	<u></u>	1	1	el el		1	•	1
Traffic Volume (vph)	86	1207	292	86	833	41	122	25	130	135	95	286
Future Volume (vph)	86	1207	292	86	833	41	122	25	130	135	95	286
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.9	7.9	7.9	4.0	7.9	7.9	6.8	6.8		6.8	6.8	6.8
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.87		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1805	3539	1583	1736	3438	1615	1805	1621		1805	1900	1615
Flt Permitted	0.32	1.00	1.00	0.15	1.00	1.00	0.69	1.00		0.57	1.00	1.00
Satd. Flow (perm)	610	3539	1583	272	3438	1615	1314	1621		1074	1900	1615
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	91	1284	311	91	886	44	130	27	138	144	101	304
RTOR Reduction (vph)	0	0	122	0	0	11	0	115	0	0	0	155
Lane Group Flow (vph)	91	1284	189	91	886	33	130	50	0	144	101	149
Heavy Vehicles (%)	0%	2%	2%	4%	5%	0%	0%	0%	3%	0%	0%	0%
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	Perm	NA		Perm	NA	Perm
Protected Phases		4		3	8			2			6	
Permitted Phases	4		4	8		8	2			6		6
Actuated Green, G (s)	67.1	67.1	67.1	77.1	77.1	77.1	18.4	18.4		18.4	18.4	18.4
Effective Green, g (s)	67.1	67.1	67.1	77.1	77.1	77.1	18.4	18.4		18.4	18.4	18.4
Actuated g/C Ratio	0.61	0.61	0.61	0.70	0.70	0.70	0.17	0.17		0.17	0.17	0.17
Clearance Time (s)	7.9	7.9	7.9	4.0	7.9	7.9	6.8	6.8		6.8	6.8	6.8
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	371	2154	963	270	2405	1129	219	270		179	317	269
v/s Ratio Prot		c0.36		0.02	c0.26			0.03			0.05	
v/s Ratio Perm	0.15		0.12	0.22		0.02	0.10			c0.13		0.09
v/c Ratio	0.25	0.60	0.20	0.34	0.37	0.03	0.59	0.19		0.80	0.32	0.55
Uniform Delay, d1	9.9	13.2	9.6	8.1	6.7	5.1	42.4	39.5		44.2	40.4	42.1
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	1.6	1.2	0.5	0.7	0.4	0.0	4.3	0.3		22.4	0.6	2.5
Delay (s)	11.5	14.5	10.0	8.8	7.1	5.1	46.7	39.8		66.6	41.0	44.6
Level of Service	В	B	В	A	A	A	D	D		E	D	D
Approach Delay (s)		13.5			7.2			42.8			49.7	
Approach LOS		В			A			D			D	
Intersection Summary			40.7		1014.00							
HCM 2000 Control Dela			19.7		ICM 20	00 Leve	l of Serv	/ice	В			
HCM 2000 Volume to C		ratio	0.63						10.7			
Actuated Cycle Length (110.2			ost time			18.7			
Intersection Capacity Ut	ilization		91.3%		CU Lev	el of Sei	vice		F			
Analysis Period (min)			15									
c Critical Lane Group												

Configurations N Perm NA Pandititis is i		≯	-	\mathbf{r}	4	+	•	1	t	1	Ļ
c Volume (vph) 15 1448 72 49 1007 11 37 6 11 4 a Volume (vph) 15 1448 72 49 1007 11 37 6 11 4 group Flow (vph) 16 1591 79 54 1107 12 41 65 12 36 Type pm+pt NA Perm pm NA Perm NA Perm NA ctod Phases 7 4 3 8 2 6 6 h Phase 7 4 4 3 8 8 2 6 6 h Phase 7 4 4 3 8 8 2 6 6 h Phase 7 4 4 3 8 8 2 2 6 6 h Phase 7 4 4 3 8 2 2 6 8 8 2 2 6 26 5 5 9 3 7	_ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT
c Volume (vph) 15 1448 72 49 1007 11 37 6 11 4 a Volume (vph) 15 1448 72 49 1007 11 37 6 11 4 a Volume (vph) 16 1591 79 54 1107 12 44 65 12 36 Type pm+pt NA Perm Pm+pt NA Perm Pm NA Perm NA ctod Phases 7 4 3 8 2 6 6 h Phase 7 4 4 3 8 8 2 6 6 h Phase 7 4 4 3 8 8 2 6 6 h Phase 7 4 4 3 8 8 2 2 6 6 h Phase 7 4 4 3 8 2 2 6 8 8 0 9 7 7 7 7 7 7	ane Configurations	ሻ	^	1	۲	* *	1	۲	ţ,	ሻ	ĥ
a Volume (vph) 15 1448 72 49 1007 11 37 6 11 4 Group Flow (vph) 16 1591 79 54 1107 12 41 65 12 36 Type pm+pt NA Perm pm Perm NA Perm NA Cted Phases 7 4 3 8 8 2 6 ctor Phase 7 4 4 3 8 8 2 6 otor Phase 7 4 4 3 8 8 2 6 6 hPhase 7 4 4 3 8 8 2 2 6 6 hPhase 7 4 4 3 8 8 2 2 6 6 hPhase 10.0 37.9 37.9 37.9 37.7 37.7 37.7 37.7 31.7 31.7 31.7 31.7 31.7 31.7 31.7 31.7 31.7 31.7 31.7	affic Volume (vph)										
Group Flow (vph) 16 1591 79 54 1107 12 41 65 12 36 Type pm+pt NA Perm pm+pt NA Perm Perm NA Perm NA Cted Phases 7 4 3 8 2 6 tide Phases 7 4 4 3 8 8 2 6 tide Phases 7 4 4 3 8 8 2 2 6 tide Phase 7 4 4 3 8 8 2 2 6 6 num Spiti (s) 10.0 37.9 37.9 10.0 37.9 37.7 30.7	ture Volume (vph)		1448	72	49	1007	11	37	6	11	4
Type pm+pt NA Perm pmm+pt NA Perm Perm NA Perm NA cted Phases 7 4 3 8 2 6 itted Phases 7 4 4 3 8 2 2 6 h Phase 7 4 4 3 8 8 2 2 6 6 h Phase 7 4 4 3 8 8 2 2 6 6 h Phase 7 4 4 3 8 8 2 2 6 6 h Phase 10.0 37.9 37.9 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 31.7	e Group Flow (vph)								65	12	36
cted Phases 7 4 3 8 2 6 titted Phases 4 4 8 8 2 6 tor Phase 7 4 4 3 8 8 2 6 tor Phase 7 4 4 3 8 8 2 2 6 tor Phase 7 4 4 3 8 8 2 2 6 tor Phase 7 4 4 3 8 8 2 2 6 6 tor Phase 7 4 4 3 8 8 2 2 6 6 tor Phase 10.0 37.9 37.9 30.7					pm+pt					Perm	
itted Phases 4 4 8 8 2 6 itter Phase 7 4 4 3 8 8 2 2 6 6 h Phase num Initial (s) 5.0 30.0 30.0 5.0 30.0 30.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 10.0 37.9 37.9 30.7 </td <td>tected Phases</td> <td></td>	tected Phases										
tor Phase 7 4 4 3 8 8 2 2 6 6 h Phase num Initial (s) 5.0 30.0 30.0 5.0 30.0 30.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 num Split (s) 10.0 37.9 37.9 30.7 <td>rmitted Phases</td> <td>4</td> <td></td> <td>4</td> <td>8</td> <td></td> <td>8</td> <td>2</td> <td></td> <td>6</td> <td></td>	rmitted Phases	4		4	8		8	2		6	
h Phase hum Initial (s) 5.0 30.0 30.0 5.0 30.0 30.0 8.0 8.0 8.0 8.0 8.0 hum Split (s) 10.0 37.9 37.9 10.0 37.9 30.7 30.7 30.7 30.7 Split (s) 20.0 67.9 67.9 20.0 67.9 67.9 31.7 31.7 31.7 Split (s) 16.7% 56.8% 56.8% 16.7% 56.8% 56.8% 26.5% 26.5% 26.5% 26.5% w Time (s) 3.0 5.9 5.9 3.0 5.9 5.9 4.1 4.1 4.1 4.1 d Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.6 2.6 2.6 2.6 Fime Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	ector Phase	7	4	4		8			2	6	6
num Split (s) 10.0 37.9 37.9 10.0 37.9 37.9 30.7 </td <td>itch Phase</td> <td></td>	itch Phase										
num Split (s) 10.0 37.9 37.9 10.0 37.9 37.9 30.7 </td <td>imum Initial (s)</td> <td>5.0</td> <td>30.0</td> <td>30.0</td> <td>5.0</td> <td>30.0</td> <td>30.0</td> <td>8.0</td> <td>8.0</td> <td>8.0</td> <td>8.0</td>	imum Initial (s)	5.0	30.0	30.0	5.0	30.0	30.0	8.0	8.0	8.0	8.0
Split (s) 20.0 67.9 67.9 67.9 31.7	imum Split (s)										
Split (%) 16.7% 56.8% 56.8% 16.7% 56.8% 26.5%	al Split (s)										
v Time (s) 3.0 5.9 5.9 3.0 5.9 5.9 4.1 4.1 4.1 4.1 ad Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.6 </td <td>al Split (%)</td> <td></td>	al Split (%)										
ad Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.6 7.6 6.7 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	low Time (s)										
Time Adjust (s) 0.0	Red Time (s)										
Lost Time (s) 5.0 7.9 7.9 5.0 7.9 7.9 6.7	st Time Adjust (s)										
Lag Lead Lag Lag Lead Lag Lag Lag Lag Yes Yes </td <td>al Lost Time (s)</td> <td></td>	al Lost Time (s)										
Lag Optimize? Yes	d/Lag										
I Mode None Max Max None Max Max None N	•			-	Yes		•				
ol Delay 2.9 12.2 2.0 4.5 7.1 0.0 46.4 17.3 41.5 18.9 e Delay 0.0 <td>all Mode</td> <td></td> <td></td> <td></td> <td>None</td> <td></td> <td></td> <td>None</td> <td>None</td> <td>None</td> <td>None</td>	all Mode				None			None	None	None	None
ol Delay 2.9 12.2 2.0 4.5 7.1 0.0 46.4 17.3 41.5 18.9 e Delay 0.0 <td>Ratio</td> <td></td> <td></td> <td></td> <td>0.21</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Ratio				0.21						
e Delay 0.0 <	trol Delay										
Delay 2.9 12.2 2.0 4.5 7.1 0.0 46.4 17.3 41.5 18.9 e Length 50th (m) 0.5 95.7 0.0 1.7 31.8 0.0 7.5 1.3 2.2 0.7 e Length 95th (m) 2.0 137.6 5.3 4.6 75.3 0.0 18.3 13.7 7.8 10.0 al Link Dist (m) 440.7 446.3 949.6 204.9 Bay Length (m) 40.0 22.0 42.0 51.0 20.0 14.0 Capacity (vph) 555 2446 1139 407 2594 1238 377 487 311 432 ation Cap Reductn 0	ue Delay										
e Length 50th (m) 0.5 95.7 0.0 1.7 31.8 0.0 7.5 1.3 2.2 0.7 e Length 95th (m) 2.0 137.6 5.3 4.6 75.3 0.0 18.3 13.7 7.8 10.0 al Link Dist (m) 440.7 446.3 949.6 204.9 Bay Length (m) 40.0 22.0 42.0 51.0 20.0 14.0 Capacity (vph) 555 2446 1139 407 2594 1238 377 487 311 432 ation Cap Reductn 0	al Delay										
e Length 95th (m) 2.0 137.6 5.3 4.6 75.3 0.0 18.3 13.7 7.8 10.0 al Link Dist (m) 440.7 446.3 949.6 204.9 Bay Length (m) 40.0 22.0 42.0 51.0 20.0 14.0 Capacity (vph) 555 2446 1139 407 2594 1238 377 487 311 432 ation Cap Reductn 0 0 0 0 0 0 0 0 0 ack Cap Reductn 0 <t< td=""><td>eue Length 50th (m)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	eue Length 50th (m)										
al Link Dist (m) 440.7 446.3 949.6 204.9 Bay Length (m) 40.0 22.0 42.0 51.0 20.0 14.0 Capacity (vph) 555 2446 1139 407 2594 1238 377 487 311 432 ation Cap Reductn 0 0 0 0 0 0 0 0 ack Cap Reductn 0 0 0 0 0 0 0 0 0 ge Cap Reductn 0 0 0 0 0 0 0 0 0 0 ge Cap Reductn 0	eue Length 95th (m)	2.0	137.6	5.3	4.6	75.3	0.0	18.3	13.7	7.8	10.0
Bay Length (m) 40.0 22.0 42.0 51.0 20.0 14.0 Capacity (vph) 555 2446 1139 407 2594 1238 377 487 311 432 ation Cap Reductn 0 0 0 0 0 0 0 0 0 ack Cap Reductn 0 0 0 0 0 0 0 0 0 ge Cap Reductn 0 0 0 0 0 0 0 0 0 ge Cap Reductn 0	rnal Link Dist (m)										
Capacity (vph) 555 2446 1139 407 2594 1238 377 487 311 432 ation Cap Reductn 0 <td>n Bay Length (m)</td> <td>40.0</td> <td></td> <td>22.0</td> <td>42.0</td> <td></td> <td>51.0</td> <td>20.0</td> <td></td> <td>14.0</td> <td></td>	n Bay Length (m)	40.0		22.0	42.0		51.0	20.0		14.0	
ation Cap Reductn 0	se Capacity (vph)	555	2446	1139	407	2594	1238	377	487	311	432
ack Cap Reductn 0	rvation Cap Reductn			0	0	0	0	0	0	0	0
ge Cap Reductn 0	Ilback Cap Reductn		0	0	0	0	0	0	0	0	0
Ced v/c Ratio 0.03 0.65 0.07 0.13 0.43 0.01 0.11 0.13 0.04 0.08 ection Summary Length: 119.6	rage Cap Reductn	0	0	0	0	0	0	0	0	0	0
Length: 119.6 ted Cycle Length: 92.7 al Cycle: 90 ol Type: Semi Act-Uncoord	luced v/c Ratio	0.03	0.65	0.07	0.13	0.43	0.01	0.11	0.13	0.04	0.08
ted Cycle Length: 92.7 al Cycle: 90 ol Type: Semi Act-Uncoord	rsection Summary										
al Cycle: 90 ol Type: Semi Act-Uncoord	le Length: 119.6										
ol Type: Semi Act-Uncoord	uated Cycle Length:	92.7									
	tural Cycle: 90										
and Phases: 2: Moonlight Ave & Kingsway	ntrol Type: Semi Act-	Uncoor	ď								
	lite and Phases: 2.	Moonli	aht Avo	& King							
			yn Ave		sway						

™ ø2	√ Ø3	↓ ₀₄
31.7 s	20 s	67.9 s
	✓ Ø7	
31.7 s	20 s	67.9 s

	≯	-	\rightarrow	*	+	*	1	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኘ	††	1	٦	^	1	۲	4		۲	eî 👘	
Traffic Volume (vph)	15	1448	72	49	1007	11	37	6	53	11	4	29
Future Volume (vph)	15	1448	72	49	1007	11	37	6	53	11	4	29
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7		6.7	6.7	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.87		1.00	0.87	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1687	3471	1583	1736	3438	1615	1805	1646		1530	1512	
FIt Permitted	0.24	1.00	1.00	0.11	1.00	1.00	0.73	1.00		0.71	1.00	
Satd. Flow (perm)	434	3471	1583	194	3438	1615	1394	1646		1151	1512	
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	16	1591	79	54	1107	12	41	7	58	12	4	32
RTOR Reduction (vph)	0	0	26	0	0	4	0	54	0	0	30	0
Lane Group Flow (vph)	16	1591	53	54	1107	8	41	11	0	12	6	0
Heavy Vehicles (%)	7%	4%	2%	4%	5%	0%	0%	0%	0%	18%	0%	10%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8		8	2			6		
Actuated Green, G (s)	67.9	65.6	65.6	73.1	68.2	68.2	7.2	7.2		7.2	7.2	
Effective Green, g (s)	67.9	65.6	65.6	73.1	68.2	68.2	7.2	7.2		7.2	7.2	
Actuated g/C Ratio	0.70	0.67	0.67	0.75	0.70	0.70	0.07	0.07		0.07	0.07	
Clearance Time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7		6.7	6.7	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	332	2340	1067	223	2409	1131	103	121		85	111	
v/s Ratio Prot	0.00	c0.46		c0.01	c0.32			0.01			0.00	
v/s Ratio Perm	0.03		0.03	0.17		0.01	c0.03			0.01		
v/c Ratio	0.05	0.68	0.05	0.24	0.46	0.01	0.40	0.09		0.14	0.06	
Uniform Delay, d1	4.5	9.5	5.3	6.2	6.4	4.4	43.0	42.0		42.2	41.9	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.1	1.6	0.1	0.6	0.6	0.0	2.5	0.3		0.8	0.2	
Delay (s)	4.6	11.2	5.4	6.8	7.1	4.4	45.5	42.3		42.9	42.1	
Level of Service	A	В	A	A	A	A	D	D		D	D	
Approach Delay (s)		10.8			7.0			43.6			42.3	
Approach LOS		В			A			D			D	
Intersection Summary									_			
HCM 2000 Control Dela			11.0	F	ICM 20	00 Leve	l of Serv	/ice	В			
HCM 2000 Volume to C		ratio	0.63						10.5			
Actuated Cycle Length			97.3		Sum of I				19.6			
Intersection Capacity U	tilization		61.6%		CU Lev	el of Sei	rvice		В			
Analysis Period (min)			15									
c Critical Lane Group												

Estelle Street Development 3: Bancfroft Dr & Levesque St

	≯	-	+	•	1	~			
Movement	EBL	EBT	WBT	WBR	SBL	SBR			
Lane Configurations		र्स	ef 🔰		- M				
Traffic Volume (veh/h)	139	124	61	24	60	214			
Future Volume (Veh/h)	139	124	61	24	60	214			
Sign Control		Free	Free		Stop				
Grade		0%	0%		0%				
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80			
Hourly flow rate (vph)	174	155	76	30	75	268			
Pedestrians									
Lane Width (m)									
Walking Speed (m/s)									
Percent Blockage									
Right turn flare (veh)									
Median type		None	None						
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
vC, conflicting volume	106				594	91			
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	106				594	91			
tC, single (s)	4.1				6.5	6.2			
tC, 2 stage (s)									
tF (s)	2.2				3.6	3.3			
p0 queue free %	88				81	72			
cM capacity (veh/h)	1498				405	969			
Direction, Lane #	EB 1	WB 1	SB 1						
Volume Total	329	106	343						
Volume Left	174	0	75						
Volume Right	0	30	268						
cSH	1498	1700	743						
Volume to Capacity	0.12	0.06	0.46						
Queue Length 95th (m)	3.1	0.0	19.6						
Control Delay (s)	4.5	0.0	13.9						
Lane LOS	A		В						
Approach Delay (s)	4.5	0.0	13.9						
Approach LOS		0.0	B						
Intersection Summary									
Average Delay			8.1						
Intersection Capacity Uti	lization		44.1%	10	CU Leve	el of Servio	e	А	
Analysis Period (min)			15						
			.0						

Estelle Street DevelopmentHCM Unsignalized Intersection Capacity Analysis4: Moonlight Beach Rd/Moonlight Ave & Bancfroft DrTotal (2024) PM Peak Hour

	۶	-	\mathbf{r}	4	-	*	1	t	۲	5	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			4			\$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	55	109	2	3	53	8	7	5	3	36	3	32
Future Volume (vph)	55	109	2	3	53	8	7	5	3	36	3	32
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Hourly flow rate (vph)	64	127	2	3	62	9	8	6	3	42	3	37
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	193	74	17	82								
Volume Left (vph)	64	3	8	42								
Volume Right (vph)	2	9	3	37								
Hadj (s)	0.06	-0.06	-0.01	-0.09								
Departure Headway (s)	4.3	4.3	4.6	4.4								
Degree Utilization, x	0.23	0.09	0.02	0.10								
Capacity (veh/h)	821	803	730	757								
Control Delay (s)	8.5	7.7	7.7	7.9								
Approach Delay (s)	8.5	7.7	7.7	7.9								
Approach LOS	А	А	А	А								
Intersection Summary												
Delay			8.2									
Level of Service			А									
Intersection Capacity Uti	lization		27.6%	[(CU Leve	el of Ser	vice		А			
Analysis Period (min)			15									

А

Intersection	

Intersection Delay, s/veh 8.2 Intersection LOS

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		÷			\$			÷			\$	
Traffic Vol, veh/h	55	109	2	3	53	8	7	5	3	36	3	32
Future Vol, veh/h	55	109	2	3	53	8	7	5	3	36	3	32
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	3	0	7
Mvmt Flow	64	127	2	3	62	9	8	6	3	42	3	37
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Lef	t SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Rig	ht NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	8.5			7.7			7.7			7.9		
HCM LOS	Α			А			А			А		

Lane	NBLn1	EBLn1V	VBLn1	SBLn1	
Vol Left, %	47%	33%	5%	51%	
Vol Thru, %	33%	66%	83%	4%	
Vol Right, %	20%	1%	12%	45%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	15	166	64	71	
LT Vol	7	55	3	36	
Through Vol	5	109	53	3	
RT Vol	3	2	8	32	
Lane Flow Rate	17	193	74	83	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.022	0.225	0.088	0.101	
Departure Headway (Hd)	4.566	4.19	4.265	4.398	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	787	845	844	819	
Service Time	2.573	2.277	2.273	2.403	
HCM Lane V/C Ratio	0.022	0.228	0.088	0.101	
HCM Control Delay	7.7	8.5	7.7	7.9	
HCM Lane LOS	A	А	А	А	
HCM 95th-tile Q	0.1	0.9	0.3	0.3	

	≯	→	+	•	1	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		ب ا ا	eî 👘		Y		
Traffic Volume (veh/h)	12	172	78	5	3	2	
Future Volume (Veh/h)	12	172	78	5	3	2	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Hourly flow rate (vph)	13	183	83	5	3	2	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	88				294	86	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	88				294	86	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)							
tF (s)	2.2				3.5	3.3	
p0 queue free %	99				100	100	
cM capacity (veh/h)	1520				695	979	
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	196	88	5				
Volume Left	13	0	3				
Volume Right	0	5	2				
cSH	1520	1700	786				
Volume to Capacity	0.01	0.05	0.01				
Queue Length 95th (m)	0.2	0.0	0.2				
Control Delay (s)	0.6	0.0	9.6				
Lane LOS	А		А				
Approach Delay (s)	0.6	0.0	9.6				
Approach LOS			А				
Intersection Summary							
Average Delay			0.5				
Intersection Capacity Uti	ilization		26.4%	IC	CU Leve	l of Serv	vice A
Analysis Period (min)			15				
,							

メット・トレイ

Movement EBL EBR NBL NBT SBT SBR Lane Configurations Y 4 1		-	•)	I	•				
Traffic Volume (veh/h) 7 1 2 15 4 10 Future Volume (Veh/h) 7 1 2 15 4 10 Sign Control Stop Free Free Free 10 Grade 0% 0% 0% 0% Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 8 1 2 16 4 11 Pedestrians Image: Speed (m/s) Free Free Free 11 Pedestrians Image: Speed (m/s) Free Free 11 11 Pedestrians Image: Speed (m/s) Free Free 11 11 Pedestrians Image: Speed (m/s) Free Free 11 11 Walking Speed (m/s) Free None None None None None Median type None None <t< th=""><th>Movement</th><th>EBL</th><th>EBR</th><th>NBL</th><th>NBT</th><th>SBT</th><th>SBR</th><th></th><th></th><th></th></t<>	Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Traffic Volume (veh/h) 7 1 2 15 4 10 Future Volume (Veh/h) 7 1 2 15 4 10 Sign Control Stop Free Free Free 10 Grade 0% 0% 0% 0% Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 8 1 2 16 4 11 Pedestrians Image: Speed (m/s) Free Free Free 11 Pedestrians Image: Speed (m/s) Free Free 11 11 Pedestrians Image: Speed (m/s) Free Free 11 11 Pedestrians Image: Speed (m/s) Free Free 11 11 Walking Speed (m/s) Free None None None None None Median type None None <t< td=""><td>Lane Configurations</td><td>¥</td><td></td><td></td><td>ť.</td><td>f,</td><td></td><td></td><td></td><td></td></t<>	Lane Configurations	¥			ť.	f,				
Future Volume (Veh/h) 7 1 2 15 4 10 Sign Control Stop Free Free Free Free Free Grade 0% 0% 0% 0% 0% Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 8 1 2 16 4 11 Pedestrians Free Free Free Free Free Lane Width (m) Walking Speed (m/s) Free None None Percent Blockage None None None None Right um flare (veh) Median type None None None VC1, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 5 E I I If (s) 3.5 3.3 2.2 D0 queue free % 99 100 Iorection, Lane # EB NB S I I Volume Ent 8 2 0 I I Volume Right 1 0 11 I I Volume Total 98 1616 ITO	-		1	2			10			
Sign Control Stop Free Free Free Grade 0%<	Future Volume (Veh/h)	7	1	2	15	4	10			
Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 8 1 2 16 4 11 Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage 11 2 16 4 11 Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (m) X None None Median storage veh) Upstream signal (m) X None None None VC1, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 1 conf vol VC2, stage (s) 15 VC2, stage (s) 16 6.2 4.1 10 15 VC3, stage (s) 100 100 cdM capacity (veh/h) 989 1078 1616 Direction, Lane # EB 1 NB 1 SB 1 Volume Capacity (veh/h) 989 11 616 Volume Left 8 2 0 Volume Left 8 2 0 Volume Left 8		Stop			Free	Free				
Hourly flow rate (vph) 8 1 2 16 4 11 Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage 1	Grade	0%			0%	0%				
Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (m) pX, platoon unblocked vC2, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC1, single (s) 6.4 6.4 6.2 4.1 tC, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 3 5 3.5 3.3 2.2 p0 queue free % 99 100 Uoume Cotal 9 18 Volume Left 8 2 <td>Peak Hour Factor</td> <td>0.92</td> <td>0.92</td> <td>0.92</td> <td>0.92</td> <td>0.92</td> <td>0.92</td> <td></td> <td></td> <td></td>	Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (m) pX, platoon unblocked VC, conflicting volume 30 10 15 vC1, stage 1 conf vol VC2, stage 2 conf vol vC4, unblocked vol 30 10 15 tC, single (s) 6.4 6.2 4.1 tC, 2 stage 2 conf vol VC4, unblocked vol 30 10 15 tC, single (s) 6.4 6.2 4.1 tC, 2 stage 2 conf vol VC4, unblocked vol 30 10 15 tC, single (s) 6.4 6.2 4.1 tC, 2 stage 2 conf vol VC4, unblocked vol 30 10 15 tC, single (s) 6.4 6.2 4.1 tC, 2 stage 2 conf vol VC4, unblocked vol 30 10 15 tC, single (s) 6.4 6.2 4.1 tC, 2 stage 2 conf vol VC4, unblocked vol 30 10 15 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) tF (s) 3.5 3.3 2.2 p0 queue free % 99 100 100 cM capacity (veh/h) 989 1078 1616 Direction, Lane # EB 1 NB 1 SB 1 Volume Total 9 18 15 Volume Left 8 2 0 Volume Right 1 0 11 cSH 998 1616 1700 Volume to Capacity 0.01 0.00 0.01 Queue Length 95th (m) 0.2 0.0 0.0 Control Delay (s) 8.6 0.8 0.0 Lane LOS A Approach Delay (s) 8.6 0.8 0.0 Approach LOS A	Hourly flow rate (vph)	8	1	2	16	4	11			
Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median type None Median storage veh) Upstream signal (m) pX, platoon unblocked VC, conflicting volume 30 10 15 vC1, stage 1 conf vol vC2, stage 2 conf vol vC4, unblocked vol 30 10 15 vC2, stage 2 conf vol vC4, unblocked vol 30 10 15 vC2, stage 2 conf vol	Pedestrians									
Percent Blockage Right turn flare (veh) Median type None Median storage veh) Upstream signal (m) pX, platoon unblocked VC, conflicting volume 30 10 15 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 30 10 15 vCu, unblocked vol 30 10 15 15 tC, 2 stage 2 conf vol vCu, unblocked vol 30 10 15 vC2, stage 2 conf vol vCu, unblocked vol 30 10 15 vC2, stage 2 conf vol vCu, unblocked vol 30 10 15 vC2, stage 2 conf vol vCu, unblocked vol 30 10 15 tC, 2 stage (s) tf (s) 3.5 3.3 2.2 p0 queue free % 99 100 100 cM capacity (veh/h) 989 1078 Direction, Lane # EB 1 NB 1 SB 1 Volume Total 9 18 15 Volume Total 9 18 15 Volume Capacity 0.01 0.00 0.01	Lane Width (m)									
Percent Blockage Right turn flare (veh) Median type None Median storage veh) Upstream signal (m) pX, platoon unblocked VC, conflicting volume 30 10 15 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 30 10 15 vCu, unblocked vol 30 10 15 15 tC, 2 stage 2 conf vol vCu, unblocked vol 30 10 15 vC2, stage 2 conf vol vCu, unblocked vol 30 10 15 vC2, stage 2 conf vol vCu, unblocked vol 30 10 15 vC2, stage 2 conf vol vCu, unblocked vol 30 10 15 tC, 2 stage (s) tf (s) 3.5 3.3 2.2 p0 queue free % 99 100 100 cM capacity (veh/h) 989 1078 Direction, Lane # EB 1 NB 1 SB 1 Volume Total 9 18 15 Volume Total 9 18 15 Volume Capacity 0.01 0.00 0.01	Walking Speed (m/s)									
Median type None None Median storage veh) Upstream signal (m) pX, platoon unblocked VC, conflicting volume 30 10 15 VC1, stage 1 conf vol VC2, stage 2 conf vol VC4, unblocked vol 30 10 15 VC2, stage 2 conf vol VC4, unblocked vol 30 10 15 10 VC2, stage (s) 6.4 6.2 4.1 10 11 10 tC, single (s) 6.4 6.2 4.1 10 10 10 10 10 10 10 10 11 10<										
Median storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume 30 10 15 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 30 10 15 tC, stage 1 conf vol vC1, stage 1 conf vol vcu, unblocked vol 30 10 15 tC, stage 2 conf vol vcu, unblocked vol 30 10 15 tC, stage 1 conf vol vcu, unblocked vol 30 10 15 tC, 2 stage (s) tf (s) 3.5 3.3 2.2 p0 queue free % 99 100 100 cM capacity (veh/h) 989 1078 1616 Direction, Lane # EB 1 NB 1 SB 1 SB 1 Volume Total 9 18 15 Volume Total 9 18 15 Volume Right 1 0 11 cSH 998 1616 1700 Volume Right 0 11 cSH 998 1616 1700 Volume Left 8 0.0 0.0 1	Right turn flare (veh)									
Upstream signal (m) pX, platoon unblocked vC, conflicting volume 30 10 15 vC1, stage 1 conf vol vc2, stage 2 conf vol vc2, stage 2 conf vol vCu, unblocked vol 30 10 15 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) tf (s) 3.5 3.3 2.2 p0 queue free % 99 100 100 cM capacity (veh/h) 989 1078 1616 Direction, Lane # EB 1 NB 1 SB 1 Volume Total 9 18 15 Volume Left 8 2 0 Volume Right 1 0 11 cSH 998 1616 1700 Volume to Capacity 0.01 0.00 0.01 Queue Length 95th (m) 0.2 0.0 0.0 Control Delay (s) 8.6 0.8 0.0 Lane LOS A A Approach LOS A A Intersection Summary Intersection Summary	Median type				None	None				
pX, platoon unblocked 30 10 15 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vCu, unblocked vol 30 10 15 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) t t t tF (s) 3.5 3.3 2.2 p0 queue free % 99 100 100 cM capacity (veh/h) 989 1078 1616 Direction, Lane # EB 1 NB 1 SB 1 Volume Total 9 18 15 Volume Right 1 0 11 cSH 998 1616 1700 Volume to Capacity 0.01 0.00 0.01 Queue Length 95th (m) 0.2 0.0 0.0 Control Delay (s) 8.6 0.8 0.0 Lane LOS A A A Approach LOS A Intersection Summary	Median storage veh)									
VC, conflicting volume 30 10 15 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 30 10 15 vCu, unblocked vol 30 10 15 tc, single (s) 6.4 6.2 4.1 tC, stage (s) tf (s) 3.5 3.3 2.2 to the stage (s) tf (s) 100 to the stage (s) tf (s) to the stage (s) <td>Upstream signal (m)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Upstream signal (m)									
vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 30 10 15 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) t t t tF (s) 3.5 3.3 2.2 p0 queue free % 99 100 100 cM capacity (veh/h) 989 1078 1616 Direction, Lane # EB 1 NB 1 SB 1 Volume Total 9 18 15 Volume Left 8 2 0 Volume Right 1 0 11 cSH 998 1616 1700 Volume to Capacity 0.01 0.00 0.01 Queue Length 95th (m) 0.2 0.0 0.0 Control Delay (s) 8.6 0.8 0.0 Lane LOS A A Approach LOS A Intersection Summary	pX, platoon unblocked									
vC2, stage 2 conf vol VCu, unblocked vol 30 10 15 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) TF (s) 3.5 3.3 2.2 p0 queue free % 99 100 100 cM capacity (veh/h) 989 1078 1616 Direction, Lane # EB 1 NB 1 SB 1 Volume Total 9 18 15 Volume Left 8 2 0 Volume Right 1 0 11 cSH 998 1616 1700 Volume to Capacity 0.01 0.00 0.01 Queue Length 95th (m) 0.2 0.0 0.0 Control Delay (s) 8.6 0.8 0.0 Lane LOS A A Approach LOS A Intersection Summary	vC, conflicting volume	30	10	15						
vCu, unblocked vol 30 10 15 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s)	vC1, stage 1 conf vol									
tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s)	vC2, stage 2 conf vol									
tC, 2 stage (s) tF (s) 3.5 3.3 2.2 p0 queue free % 99 100 100 cM capacity (veh/h) 989 1078 1616 Direction, Lane # EB 1 NB 1 SB 1 Volume Total 9 18 15 Volume Left 8 2 0 Volume Right 1 0 11 cSH 998 1616 1700 Volume to Capacity 0.01 0.00 0.01 Queue Length 95th (m) 0.2 0.0 0.0 Control Delay (s) 8.6 0.8 0.0 Lane LOS A A Approach Delay (s) 8.6 0.8 Approach LOS A Intersection Summary	vCu, unblocked vol	30	10	15						
tC, 2 stage (s) tF (s) 3.5 3.3 2.2 p0 queue free % 99 100 100 cM capacity (veh/h) 989 1078 1616 Direction, Lane # EB 1 NB 1 SB 1 Volume Total 9 18 15 Volume Left 8 2 0 Volume Right 1 0 11 cSH 998 1616 1700 Volume to Capacity 0.01 0.00 0.01 Queue Length 95th (m) 0.2 0.0 0.0 Control Delay (s) 8.6 0.8 0.0 Lane LOS A A Approach Delay (s) 8.6 0.8 Approach LOS A Intersection Summary	tC, single (s)	6.4	6.2	4.1						
p0 queue free % 99 100 100 cM capacity (veh/h) 989 1078 1616 Direction, Lane # EB 1 NB 1 SB 1 Volume Total 9 18 15 Volume Left 8 2 0 Volume Right 1 0 11 cSH 998 1616 1700 Volume to Capacity 0.01 0.00 0.01 Queue Length 95th (m) 0.2 0.0 0.0 Control Delay (s) 8.6 0.8 0.0 Lane LOS A A Approach Delay (s) 8.6 0.8 0.0 Approach LOS A Intersection Summary Intersection Summary										
cM capacity (veh/h) 989 1078 1616 Direction, Lane # EB 1 NB 1 SB 1 Volume Total 9 18 15 Volume Left 8 2 0 Volume Right 1 0 11 cSH 998 1616 1700 Volume to Capacity 0.01 0.00 0.01 Queue Length 95th (m) 0.2 0.0 0.0 Control Delay (s) 8.6 0.8 0.0 Lane LOS A A Approach Delay (s) 8.6 0.8 0.0 Approach LOS A Intersection Summary Intersection Summary	tF (s)	3.5	3.3	2.2						
Direction, Lane # EB 1 NB 1 SB 1 Volume Total 9 18 15 Volume Left 8 2 0 Volume Right 1 0 11 cSH 998 1616 1700 Volume to Capacity 0.01 0.00 0.01 Queue Length 95th (m) 0.2 0.0 0.0 Control Delay (s) 8.6 0.8 0.0 Lane LOS A A Approach Delay (s) 8.6 0.8 0.0 Approach LOS A Intersection Summary Intersection Summary	p0 queue free %	99	100	100						
Volume Total 9 18 15 Volume Left 8 2 0 Volume Right 1 0 11 cSH 998 1616 1700 Volume to Capacity 0.01 0.00 0.01 Queue Length 95th (m) 0.2 0.0 0.0 Control Delay (s) 8.6 0.8 0.0 Lane LOS A A Approach Delay (s) 8.6 0.8 0.0 Approach LOS A Intersection Summary Intersection Summary	cM capacity (veh/h)	989	1078	1616						
Volume Total 9 18 15 Volume Left 8 2 0 Volume Right 1 0 11 cSH 998 1616 1700 Volume to Capacity 0.01 0.00 0.01 Queue Length 95th (m) 0.2 0.0 0.0 Control Delay (s) 8.6 0.8 0.0 Lane LOS A A Approach Delay (s) 8.6 0.8 0.0 Approach LOS A Intersection Summary Intersection Summary	Direction Lane #	FR 1	NR 1	SB 1						
Volume Left 8 2 0 Volume Right 1 0 11 cSH 998 1616 1700 Volume to Capacity 0.01 0.00 0.01 Queue Length 95th (m) 0.2 0.0 0.0 Control Delay (s) 8.6 0.8 0.0 Lane LOS A A Approach Delay (s) 8.6 0.8 0.0 Approach LOS A Intersection Summary Intersection Summary										
Volume Right 1 0 11 cSH 998 1616 1700 Volume to Capacity 0.01 0.00 0.01 Queue Length 95th (m) 0.2 0.0 0.0 Control Delay (s) 8.6 0.8 0.0 Lane LOS A A Approach Delay (s) 8.6 0.8 0.0 Approach LOS A Intersection Summary										
cSH 998 1616 1700 Volume to Capacity 0.01 0.00 0.01 Queue Length 95th (m) 0.2 0.0 0.0 Control Delay (s) 8.6 0.8 0.0 Lane LOS A A Approach Delay (s) 8.6 0.8 0.0 Intersection Summary Intersection Summary Intersection Summary										
Volume to Capacity 0.01 0.00 0.01 Queue Length 95th (m) 0.2 0.0 0.0 Control Delay (s) 8.6 0.8 0.0 Lane LOS A A Approach Delay (s) 8.6 0.8 0.0 Intersection Summary Intersection Summary Intersection Summary Intersection Summary										
Queue Length 95th (m) 0.2 0.0 0.0 Control Delay (s) 8.6 0.8 0.0 Lane LOS A A Approach Delay (s) 8.6 0.8 0.0 Approach LOS A A Intersection Summary Intersection Summary Intersection Summary										
Control Delay (s)8.60.80.0Lane LOSAAApproach Delay (s)8.60.80.0Approach LOSAAIntersection SummaryIntersection Summary										
Lane LOSAAApproach Delay (s)8.60.80.0Approach LOSAIntersection Summary										
Approach Delay (s)8.60.80.0Approach LOSAIntersection Summary				0.0						
Approach LOS A Intersection Summary				0.0						
Intersection Summary			0.0	0.0						
•		~								
				2.2						
Intersection Capacity Utilization 13.3% ICU Level of Service A		lization			l	CU Leve	el of Servic	е	А	
Analysis Period (min) 15	Analysis Period (min)			15						

	≯	\mathbf{r}	1	1	Ļ	~		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	- M			र्भ	eî 👘			
Traffic Volume (veh/h)	24	3	5	17	11	38		
Future Volume (Veh/h)	24	3	5	17	11	38		
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	26	3	5	18	12	41		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type				None	None			
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	60	32	53					
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	60	32	53					
tC, single (s)	6.4	6.2	4.1					
tC, 2 stage (s)	••••							
tF (s)	3.5	3.3	2.2					
p0 queue free %	97	100	100					
cM capacity (veh/h)	948	1047	1566					
,								
Direction, Lane # Volume Total	EB 1 29	NB 1 23	SB 1 53					
Volume Left	29	23 5	0					
Volume Right	20	0	41					
cSH	957	1566	1700					
Volume to Capacity	0.03	0.00	0.03					
Queue Length 95th (m)	0.03	0.00	0.03					
Control Delay (s)	8.9	1.6	0.0					
Lane LOS	A	A	0.0					
Approach Delay (s)	8.9	1.6	0.0					
Approach LOS	A							
Intersection Summary								
Average Delay			2.8					
Intersection Capacity Uti	lization		15.2%	l	CU Leve	el of Servio	ce	А
Analysis Period (min)			15					

	≯	-	\mathbf{r}	4	-	•	1	t	1	ţ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	ľ		1	ľ	<u></u>	1	ľ	eî 👘	ľ	•	1	
Traffic Volume (vph)	185	467	123	130	1139	163	367	111	59	31	44	
Future Volume (vph)	185	467	123	130	1139	163	367	111	59	31	44	
Lane Group Flow (vph)	206	519	137	144	1266	181	408	261	66	34	49	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	NA	Perm	
Protected Phases	7	4		3	8		5	2		6		
Permitted Phases	4		4	8		8	2		6		6	
Detector Phase	7	4	4	3	8	8	5	2	6	6	6	
Switch Phase												
Minimum Initial (s)	4.5	30.0	30.0	5.0	30.0	30.0	4.5	8.0	8.0	8.0	8.0	
Minimum Split (s)	9.0	37.9	37.9	9.0	37.9	37.9	9.0	27.8	27.8	27.8	27.8	
Total Split (s)	15.0	61.0	61.0	9.0	55.0	55.0	25.0	53.0	28.0	28.0	28.0	
Total Split (%)	12.2%	49.6%	49.6%	7.3%	44.7%	44.7%	20.3%	43.1%	22.8%	22.8%	22.8%	
Yellow Time (s)	3.0	5.9	5.9	3.0	5.9	5.9	3.0	3.6	3.6	3.6	3.6	
All-Red Time (s)	1.0	2.0	2.0	1.0	2.0	2.0	1.0	3.2	3.2	3.2	3.2	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.0	7.9	7.9	4.0	7.9	7.9	4.0	6.8	6.8	6.8	6.8	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead		Lag	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	
Recall Mode	None	Max	Max	None	Max	Max	None	None	None	None	None	
v/c Ratio	0.85	0.32	0.16	0.30	0.88	0.24	0.86	0.47	0.53	0.16	0.16	
Control Delay	56.0	19.6	3.7	14.5	38.7	7.3	51.3	26.9	63.7	47.4	1.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	56.0	19.6	3.7	14.5	38.7	7.3	51.3	26.9	63.7	47.4	1.1	
Queue Length 50th (m)	30.7	39.3	0.0	14.5	143.5	5.7	79.9	37.8	14.9	7.4	0.0	
Queue Length 95th (m)	#81.7	57.6	11.7	27.6	#207.2	21.4	#118.4	61.8	29.9	17.3	0.0	
Internal Link Dist (m)		516.5			440.7			737.0		303.0		
Turn Bay Length (m)	59.0		94.0	30.0		1.0	100.0		75.0			
Base Capacity (vph)	242	1600	851	487	1445	765	480	751	219	366	432	
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.85	0.32	0.16	0.30	0.88	0.24	0.85	0.35	0.30	0.09	0.11	
Intersection Summary												
Cycle Length: 123												
Actuated Cycle Length:	110.8											

Actuated Cycle Length: 110.8

Natural Cycle: 85

Control Type: Semi Act-Uncoord

95th percentile volume exceeds capacity, queue may be longer.Queue shown is maximum after two cycles.

Splits and Phases: 1: Levesque St/Street 'C' & Kingsway

	·	✓ø3 ↓ø4	ł
53 s		9s 61s	
▲ Ø5	₽ _{Ø6}	▶ _{Ø7}	
25 s	28 s	15 s 5	5s

JD Engineering

	۶	-	\mathbf{F}	4	+	•	1	1	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	- † †	1	٦	- † †	1	۲	eî 👘		٦	↑	1
Traffic Volume (vph)	185	467	123	130	1139	163	367	111	124	59	31	44
Future Volume (vph)	185	467	123	130	1139	163	367	111	124	59	31	44
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	7.9	7.9	4.0	7.9	7.9	4.0	6.8		6.8	6.8	6.8
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.92		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1719	3312	1615	1805	3374	1599	1787	1713		1805	1900	1615
Flt Permitted	0.08	1.00	1.00	0.46	1.00	1.00	0.53	1.00		0.60	1.00	1.00
Satd. Flow (perm)	141	3312	1615	874	3374	1599	996	1713		1136	1900	1615
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	206	519	137	144	1266	181	408	123	138	66	34	49
RTOR Reduction (vph)	0	0	72	0	0	81	0	36	0	0	0	45
Lane Group Flow (vph)	206	519	65	144	1266	100	408	225	0	66	34	4
Heavy Vehicles (%)	5%	9%	0%	0%	7%	1%	1%	0%	4%	0%	0%	0%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm
Protected Phases	7	4		3	8		5	2			6	
Permitted Phases	4		4	8		8	2			6		6
Actuated Green, G (s)	62.6	53.6	53.6	52.5	47.5	47.5	35.0	35.0		10.3	10.3	10.3
Effective Green, g (s)	62.6	53.6	53.6	52.5	47.5	47.5	35.0	35.0		10.3	10.3	10.3
Actuated g/C Ratio	0.56	0.48	0.48	0.47	0.42	0.42	0.31	0.31		0.09	0.09	0.09
Clearance Time (s)	4.0	7.9	7.9	4.0	7.9	7.9	4.0	6.8		6.8	6.8	6.8
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	234	1580	770	450	1427	676	456	533		104	174	148
v/s Ratio Prot	c0.09	0.16		0.01	0.38		c0.16	0.13			0.02	
v/s Ratio Perm	c0.40		0.04	0.14		0.06	c0.11			0.06		0.00
v/c Ratio	0.88	0.33	0.08	0.32	0.89	0.15	0.89	0.42		0.63	0.20	0.03
Uniform Delay, d1	30.0	18.2	16.0	17.3	29.9	19.9	35.0	30.6		49.2	47.2	46.5
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	29.5	0.6	0.2	0.4	8.5	0.5	19.6	0.5		12.0	0.6	0.1
Delay (s)	59.5	18.8	16.2	17.7	38.4	20.4	54.5	31.2		61.2	47.7	46.5
Level of Service	E	В	В	В	D	С	D	С		E	D	D
Approach Delay (s)		28.1			34.5			45.4			53.3	
Approach LOS		С			С			D			D	
Intersection Summary									_			
HCM 2000 Control Dela			35.9		ICM 20	00 Leve	el of Serv	lice	D			
HCM 2000 Volume to C		ratio	0.94									
Actuated Cycle Length	· · /		112.3		Sum of l				22.7			
Intersection Capacity U	tilization		87.7%](CU Leve	el of Se	rvice		E			
Analysis Period (min)			15									
c Critical Lane Group												

Estelle Street Development 2: Moonlight Ave & Kingsway

	≯	-	\rightarrow	4	+	•	1	t	1	Ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	††	*	۲	††	1	٦	¢Î	۲	4	
Traffic Volume (vph)	29	669	37	14	1510	10	62	5	3		
Future Volume (vph)	29	669	37	14	1510	10	62	5	3	1	
Lane Group Flow (vph)	34	778	43	16	1756	12	72	47	3	16	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	NA	
Protected Phases	7	4		3	8			2		6	
Permitted Phases	4		4	8		8	2		6		
Detector Phase	7	4	4	3	8	8	2	2	6	6	
Switch Phase											
Minimum Initial (s)	5.0	30.0	30.0	5.0	30.0	30.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	10.0	37.9	37.9	10.0	37.9	37.9	30.7	30.7	30.7	30.7	
Total Split (s)	20.0	67.9	67.9	20.0	67.9	67.9	31.7	31.7	31.7	31.7	
Total Split (%)	16.7%	56.8%	56.8%	16.7%	56.8%	56.8%	26.5%	26.5%	26.5%	26.5%	
Yellow Time (s)	3.0	5.9	5.9	3.0	5.9	5.9	4.1	4.1	4.1	4.1	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.6	2.6	2.6	2.6	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7	6.7	6.7	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag					
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes					
Recall Mode	None	Max	Max	None	Max	Max	None	None	None	None	
v/c Ratio	0.21	0.32	0.04	0.03	0.71	0.01	0.46	0.21	0.03	0.11	
Control Delay	6.2	6.9	0.6	3.4	14.3	0.0	50.4	16.9	38.7	20.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	6.2	6.9	0.6	3.4	14.3	0.0	50.4	16.9	38.7	20.4	
Queue Length 50th (m)	1.3	22.5	0.0	0.6	127.2	0.0	13.5	1.1	0.6	0.2	
Queue Length 95th (m)	3.8	50.2	1.0	2.2	169.6	0.0	26.4	10.6	3.1	5.9	
Internal Link Dist (m)		440.7			446.3			949.6		204.9	
Turn Bay Length (m)	40.0		22.0	42.0		51.0	20.0		14.0		
Base Capacity (vph)	272	2463	973	720	2463	986	368	467	218	327	
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.13	0.32	0.04	0.02	0.71	0.01	0.20	0.10	0.01	0.05	
Intersection Summary											
Cycle Length: 119.6											
Actuated Cycle Length:	94.9										
Natural Cycle: 100											
Control Type: Semi Act-	Uncoor	d									
Splits and Phases: 2:	Moonli	aht Ava	& King								
		yn Ave	& Kings	sway							

₫ Ø2	√ Ø3	→ Ø4
31.7 s	20 s	67.9 s
	<u>∕</u> ∕ _{Ø7}	Ø8
31.7 s	20 s	67.9 s

Estelle Street Development 2: Moonlight Ave & Kingsway

	٦	-	\rightarrow	4	-	•	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	- † †	1	ሻ	- † †	1	٦	el 🕺		1	eî	
Traffic Volume (vph)	29	669	37	14	1510	10	62	5	35	3	1	13
Future Volume (vph)	29	669	37	14	1510	10	62	5	35	3	1	13
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7		6.7	6.7	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.87		1.00	0.86	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1280	3312	1282	1805	3438	1346	1770	1651		1081	1196	
Flt Permitted	0.08	1.00	1.00	0.36	1.00	1.00	0.75	1.00		0.73	1.00	
Satd. Flow (perm)	107	3312	1282	678	3438	1346	1392	1651		826	1196	
Peak-hour factor, PHF	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Adj. Flow (vph)	34	778	43	16	1756	12	72	6	41	3	1	15
RTOR Reduction (vph)	0	0	13	0	0	4	0	37	0	0	14	0
Lane Group Flow (vph)	34	778	30	16	1756	8	72	10	0	3	2	0
Heavy Vehicles (%)	41%	9%	26%	0%	5%	20%	2%	0%	0%	67%	0%	39%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8		8	2			6		
Actuated Green, G (s)	72.6	68.7	68.7	69.4	67.1	67.1	8.8	8.8		8.8	8.8	
Effective Green, g (s)	72.6	68.7	68.7	69.4	67.1	67.1	8.8	8.8		8.8	8.8	
Actuated g/C Ratio	0.73	0.69	0.69	0.70	0.68	0.68	0.09	0.09		0.09	0.09	
Clearance Time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7		6.7	6.7	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	124	2289	886	499	2320	908	123	146		73	105	
v/s Ratio Prot	c0.01	0.23		0.00	c0.51			0.01			0.00	
v/s Ratio Perm	0.19		0.02	0.02		0.01	c0.05			0.00		
v/c Ratio	0.27	0.34	0.03	0.03	0.76	0.01	0.59	0.07		0.04	0.02	
Uniform Delay, d1	8.5	6.2	4.9	4.6	10.7	5.3	43.5	41.5		41.4	41.4	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	1.2	0.4	0.1	0.0	2.4	0.0	6.9	0.2		0.2	0.1	
Delay (s)	9.7	6.6	4.9	4.6	13.1	5.3	50.5	41.7		41.7	41.5	
Level of Service	А	Α	A	А	В	A	D	D		D	D	
Approach Delay (s)		6.6			13.0			47.0			41.5	
Approach LOS		A			В			D			D	
Intersection Summary									_			
HCM 2000 Control Dela			12.7	F	ICM 20	00 Leve	l of Serv	/ice	В			
HCM 2000 Volume to C		ratio	0.71	_								
Actuated Cycle Length	· · /		99.4		Sum of l				19.6			
Intersection Capacity U	tilization		64.0%		CU Lev	el of Sei	rvice		С			
Analysis Period (min)			15									
c Critical Lane Group												

Estelle Street Development 3: Bancfroft Dr & Levesque St

۶

.

	<i>,</i>	-	-		•	*			
Movement	EBL	EBT	WBT	WBR	SBL	SBR			
Lane Configurations		र्स	eî 👘		Y				
Traffic Volume (veh/h)	280	34	100	73	31	167			
Future Volume (Veh/h)	280	34	100	73	31	167			
Sign Control		Free	Free		Stop				
Grade		0%	0%		0%				
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90			
Hourly flow rate (vph)	311	38	111	81	34	186			
Pedestrians									
Lane Width (m)									
Walking Speed (m/s)									
Percent Blockage									
Right turn flare (veh)									
Median type		None	None						
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
vC, conflicting volume	192				812	152			
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	192				812	152			
tC, single (s)	4.2				6.4	6.2			
tC, 2 stage (s)									
tF (s)	2.3				3.5	3.3			
p0 queue free %	77				87	79			
cM capacity (veh/h)	1358				271	890			
Direction, Lane #	EB 1	WB 1	SB 1						
Volume Total	349	192	220						
Volume Left	311	0	34						
Volume Right	0	81	186						
cSH	1358	1700	658						
Volume to Capacity	0.23	0.11	0.33						
Queue Length 95th (m)	7.1	0.0	11.8						
Control Delay (s)	7.7	0.0	13.2						
Lane LOS	А		В						
Approach Delay (s)	7.7	0.0	13.2						
Approach LOS			В						
Intersection Summary									
Average Delay			7.4						
Intersection Capacity Uti	ilization		49.0%	10	CU Leve	el of Serv	ice	А	
Analysis Period (min)			15				-	-	

٠

 \mathbf{V}

1

Estelle Street DevelopmentHCM Unsignalized Intersection Capacity Analysis4: Moonlight Beach Rd/Moonlight Ave & Bancfroft DrTotal (2029) AM Peak Hour

	۶	→	\mathbf{r}	4	-	*	1	t	۲	5	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			4			\$			÷	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	18	42	2	0	112	24	5	0	0	16	1	27
Future Volume (vph)	18	42	2	0	112	24	5	0	0	16	1	27
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Hourly flow rate (vph)	21	48	2	0	129	28	6	0	0	18	1	31
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	71	157	6	50								
Volume Left (vph)	21	0	6	18								
Volume Right (vph)	2	28	0	31								
Hadj (s)	0.15	-0.02	0.20	-0.03								
Departure Headway (s)	4.3	4.1	4.7	4.4								
Degree Utilization, x	0.09	0.18	0.01	0.06								
Capacity (veh/h)	810	866	726	770								
Control Delay (s)	7.7	8.0	7.7	7.7								
Approach Delay (s)	7.7	8.0	7.7	7.7								
Approach LOS	А	А	А	А								
Intersection Summary												
Delay			7.9									
Level of Service			А									
Intersection Capacity Uti	lization		24.0%	[(CU Lev	el of Ser	vice		А			
Analysis Period (min)			15									

А

Intersection

Intersection Delay, s/veh 7.9 Intersection LOS

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			÷			÷			÷	
Traffic Vol, veh/h	18	42	2	0	112	24	5	0	0	16	1	27
Future Vol, veh/h	18	42	2	0	112	24	5	0	0	16	1	27
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles, %	13	4	0	0	6	0	0	0	0	15	0	17
Mvmt Flow	21	48	2	0	129	28	6	0	0	18	1	31
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB				WB		NB			SB		
Opposing Approach	WB				EB		SB			NB		
Opposing Lanes	1				1		1			1		
Conflicting Approach Left	SB				NB		EB			WB		
Conflicting Lanes Left	1				1		1			1		
Conflicting Approach Rig	ht NB				SB		WB			EB		
Conflicting Lanes Right	1				1		1			1		
HCM Control Delay	7.9				8		7.7			7.7		
HCM LOS	Α				А		А			Α		

Lane	NBLn1	EBLn1	VBLn1	SBLn1	
Vol Left, %	100%	29%	0%	36%	
Vol Thru, %	0%	68%	82%	2%	
Vol Right, %	0%	3%	18%	61%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	5	62	136	44	
LT Vol	5	18	0	16	
Through Vol	0	42	112	1	
RT Vol	0	2	24	27	
Lane Flow Rate	6	71	156	51	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.007	0.087	0.176	0.061	
Departure Headway (Hd)	4.664	4.377	4.048	4.371	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	772	811	880	824	
Service Time	2.665	2.445	2.104	2.371	
HCM Lane V/C Ratio	0.008	0.088	0.177	0.062	
HCM Control Delay	7.7	7.9	8	7.7	
HCM Lane LOS	A	Α	А	А	
HCM 95th-tile Q	0	0.3	0.6	0.2	

	≯	+	+	•	1	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		र्भ	ef 👘		Y		
Traffic Volume (veh/h)	3	65	157	7	2	12	
Future Volume (Veh/h)	3	65	157	7	2	12	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Hourly flow rate (vph)	3	70	169	8	2	13	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	177				249	173	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	177				249	173	
tC, single (s)	4.1				6.9	6.2	
tC, 2 stage (s)							
tF (s)	2.2				4.0	3.3	
p0 queue free %	100				100	99	
cM capacity (veh/h)	1411				645	876	
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	73	177	15				
Volume Left	3	0	2				
Volume Right	0	8	13				
cSH	1411	1700	836				
Volume to Capacity	0.00	0.10	0.02				
Queue Length 95th (m)	0.1	0.0	0.4				
Control Delay (s)	0.3	0.0	9.4				
Lane LOS	А		А				
Approach Delay (s)	0.3	0.0	9.4				
Approach LOS			А				
Intersection Summary							
Average Delay			0.6				
Intersection Capacity Uti	ilization		18.7%	IC	CU Leve	l of Servic	e
Analysis Period (min)			15				
			.0				

1 ~ ٠ t Ť ↘ EBL EBR NBL NBT SBT Movement SBR Lane Configurations ¥ **₽** 12 đ Traffic Volume (veh/h) 9 2 1 9 3 Future Volume (Veh/h) 9 2 9 12 3 1 Sign Control Stop Free Free Grade 0% 0% 0% 0.92 0.92 0.92 0.92 0.92 Peak Hour Factor 0.92 Hourly flow rate (vph) 10 2 10 3 1 13 Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh) None None Median type Median storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume 26 14 16 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 26 14 16 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) 2.2 3.5 3.3 tF (s) p0 queue free % 99 100 100 cM capacity (veh/h) 993 1071 1615 NB 1 Direction, Lane # EB 1 SB 1 Volume Total 12 11 16 Volume Left 10 0 1 2 0 3 Volume Right cSH 1005 1615 1700 Volume to Capacity 0.01 0.00 0.01 Queue Length 95th (m) 0.3 0.0 0.0 Control Delay (s) 8.6 0.7 0.0 Lane LOS А А Approach Delay (s) 8.6 0.7 0.0 Approach LOS A Intersection Summary Average Delay 2.8 13.3% Intersection Capacity Utilization ICU Level of Service А Analysis Period (min) 15

~ ٠ t Ť ٠ ↘ EBL EBR NBL NBT SBT Movement SBR **þ** 9 Lane Configurations ¥ **4** 17 Traffic Volume (veh/h) 38 6 1 13 Future Volume (Veh/h) 38 6 9 1 17 13 Sign Control Stop Free Free Grade 0% 0% 0% 0.92 0.92 0.92 0.92 0.92 Peak Hour Factor 0.92 Hourly flow rate (vph) 41 7 18 14 1 10 Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median type None None Median storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume 37 17 24 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 37 17 24 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) 2.2 3.5 3.3 tF (s) p0 queue free % 96 99 100 cM capacity (veh/h) 980 1068 1604 NB 1 Direction, Lane # EB 1 SB 1 Volume Total 48 19 24 Volume Left 41 0 1 14 Volume Right 7 0 1700 cSH 992 1604 Volume to Capacity 0.05 0.00 0.01 Queue Length 95th (m) 1.2 0.0 0.0 Control Delay (s) 8.8 0.4 0.0 Lane LOS А А Approach Delay (s) 8.8 0.4 0.0 Approach LOS A Intersection Summary Average Delay 4.7 13.3% Intersection Capacity Utilization ICU Level of Service А Analysis Period (min) 15

	≯	-	\mathbf{r}	4	+	•	1	Ť	1	ţ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	<u>۲</u>	- † †	1	<u>۲</u>	<u></u>	1	<u>۲</u>	el 👘	<u>ک</u>	•	1	
Traffic Volume (vph)	86	1277	308	92	886	41	128	25	135	95	286	
Future Volume (vph)	86	1277	308	92	886	41	128	25	135	95	286	
Lane Group Flow (vph)	91	1359	328	98	943	44	136	176	144	101	304	
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	NA	Perm	
Protected Phases		4		3	8			2		6		
Permitted Phases	4		4	8		8	2		6		6	
Detector Phase	4	4	4	3	8	8	2	2	6	6	6	
Switch Phase												
Minimum Initial (s)	30.0	30.0	30.0	5.0	30.0	30.0	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	37.9	37.9	37.9	9.0	37.9	37.9	27.8	27.8	27.8	27.8	27.8	
Total Split (s)	67.9	67.9	67.9	16.0	83.9	83.9	31.8	31.8	31.8	31.8	31.8	
Total Split (%)	58.7%	58.7%		13.8%	72.5%	72.5%	27.5%	27.5%	27.5%	27.5%	27.5%	
Yellow Time (s)	5.9	5.9	5.9	3.0	5.9	5.9	3.6	3.6	3.6	3.6	3.6	
All-Red Time (s)	2.0	2.0	2.0	1.0	2.0	2.0	3.2	3.2	3.2	3.2	3.2	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.9	7.9	7.9	4.0	7.9	7.9	6.8	6.8	6.8	6.8	6.8	
Lead/Lag	Lag	Lag	Lag	Lead								
Lead-Lag Optimize?	Yes	Yes	Yes	Yes								
Recall Mode	Max	Max	Max	None	Max	Max	None	None	None	None	None	
v/c Ratio	0.27	0.65	0.31	0.37	0.40	0.04	0.60	0.44	0.82	0.31	0.73	
Control Delay	15.4	17.9	2.2	9.0	8.2	2.8	53.2	12.9	76.6	41.7	30.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	15.4	17.9	2.2	9.0	8.2	2.8	53.2	12.9	76.6	41.7	30.1	
Queue Length 50th (m)	9.6	102.7	0.0	5.7	43.4	0.5	28.6	5.2	31.5	20.1	29.5	
Queue Length 95th (m)	23.4	147.7	13.2	12.5	64.0	4.6	49.5	24.4	#58.5	36.1	61.3	
Internal Link Dist (m)		516.5			440.7			737.0		303.0		
Turn Bay Length (m)	59.0		94.0	30.0		1.0	100.0		75.0			
Base Capacity (vph)	340	2088	1068	331	2385	1131	300	484	235	433	496	
Starvation Cap Reductr		0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.27	0.65	0.31	0.30	0.40	0.04	0.45	0.36	0.61	0.23	0.61	
Intersection Summary												
Cycle Length: 1157												

Cycle Length: 115.7 Actuated Cycle Length: 109.8

Natural Cycle: 75

Control Type: Semi Act-Uncoord

95th percentile volume exceeds capacity, queue may be longer.Queue shown is maximum after two cycles.

Splits and Phases: 1: Levesque St/Street 'C' & Kingsway

₫ Ø2	√ Ø3	₩ Ø4
31.8 s	16 s	67.9 s
↓ Ø6 31.8 s	₩ Ø8	
31.8 s	83.9 s	

JD Engineering

Synchro 10 Report 03-05-2021

	٦	-	\rightarrow	4	-	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	<u></u>	1	1	<u></u>	1	ľ	el el		1	•	1
Traffic Volume (vph)	86	1277	308	92	886	41	128	25	140	135	95	286
Future Volume (vph)	86	1277	308	92	886	41	128	25	140	135	95	286
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.9	7.9	7.9	4.0	7.9	7.9	6.8	6.8		6.8	6.8	6.8
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.87		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1805	3539	1583	1736	3438	1615	1805	1618		1805	1900	1615
Flt Permitted	0.30	1.00	1.00	0.13	1.00	1.00	0.69	1.00		0.54	1.00	1.00
Satd. Flow (perm)	576	3539	1583	229	3438	1615	1314	1618		1029	1900	1615
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	91	1359	328	98	943	44	136	27	149	144	101	304
RTOR Reduction (vph)	0	0	134	0	0	11	0	123	0	0	0	137
Lane Group Flow (vph)	91	1359	194	98	943	33	136	53	0	144	101	167
Heavy Vehicles (%)	0%	2%	2%	4%	5%	0%	0%	0%	3%	0%	0%	0%
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	Perm	NA		Perm	NA	Perm
Protected Phases		4		3	8	0	0	2		0	6	0
Permitted Phases	4	64.0	4	8	70.0	8	2	40.0		6	40.0	6
Actuated Green, G (s)	64.8	64.8	64.8	76.2	76.2	76.2	18.9	18.9		18.9	18.9	18.9
Effective Green, g (s)	64.8	64.8	64.8	76.2	76.2	76.2 0.69	18.9	18.9		18.9	18.9	18.9
Actuated g/C Ratio Clearance Time (s)	0.59 7.9	0.59 7.9	0.59 7.9	0.69 4.0	0.69 7.9	7.9	0.17 6.8	0.17 6.8		0.17 6.8	0.17 6.8	0.17 6.8
	3.0	3.0	3.0	4.0	3.0	3.0	0.0 3.0	3.0		0.0 3.0	3.0	3.0
Vehicle Extension (s)												
Lane Grp Cap (vph) v/s Ratio Prot	339	2088	934	260	2385	1120	226	278		177	327	277
v/s Ratio Prot	0.16	c0.38	0.12	0.03 0.24	c0.27	0.02	0.10	0.03		c0.14	0.05	0.10
v/c Ratio	0.10	0.65	0.12	0.24	0.40	0.02	0.10	0.19		0.81	0.31	0.60
Uniform Delay, d1	11.0	15.0	10.5	9.6	7.1	5.2	42.0	38.9		43.8	39.7	42.0
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	1.9	1.6	0.5	0.9	0.5	0.0	4.5	0.3		24.0	0.5	3.7
Delay (s)	12.9	16.6	11.0	10.5	7.6	5.3	46.4	39.2		67.8	40.3	45.7
Level of Service	-2.0 B	B	B	B	A	A	D	D		E	D	D
Approach Delay (s)	2	15.4	2	2	7.7	,,	2	42.4		_	50.5	_
Approach LOS		В			A			D			D	
Intersection Summary												
HCM 2000 Control Dela			20.6	F	ICM 20	00 Leve	l of Serv	vice	С			
HCM 2000 Volume to C		ratio	0.67									
Actuated Cycle Length (109.8			ost time			18.7			
Intersection Capacity Ut	ilization		91.9%		CU Leve	el of Sei	rvice		F			
Analysis Period (min)			15									
c Critical Lane Group												

Estelle Street Development 2: Moonlight Ave & Kingsway

	٦	-	\rightarrow	1	+	•	1	t	1	Ļ
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT
ane Configurations	ሻ	††	1	ሻ	††	1	ሻ	4	ሻ	4Î
raffic Volume (vph)	15	1527	78	51	1070	11	39	6	11	4
uture Volume (vph)	15	1527	78	51	1070	11	39	6	11	4
ane Group Flow (vph)	16	1678	86	56	1176	12	43	67	12	36
urn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	NA
otected Phases	7	4		3	8			2		6
ermitted Phases	4		4	8		8	2		6	
etector Phase	7	4	4	3	8	8	2	2	6	6
vitch Phase										
nimum Initial (s)	5.0	30.0	30.0	5.0	30.0	30.0	8.0	8.0	8.0	8.0
nimum Split (s)	10.0	37.9	37.9	10.0	37.9	37.9	30.7	30.7	30.7	30.7
tal Split (s)	20.0	67.9	67.9	20.0	67.9	67.9	31.7	31.7	31.7	31.7
tal Split (%)	16.7%	56.8%	56.8%	16.7%	56.8%	56.8%	26.5%	26.5%	26.5%	26.5%
llow Time (s)	3.0	5.9	5.9	3.0	5.9	5.9	4.1	4.1	4.1	4.1
-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.6	2.6	2.6	2.6
st Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
al Lost Time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7	6.7	6.7
ad/Lag	Lead	Lag	Lag	Lead	Lag	Lag				
ad-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes				
call Mode	None	Max	Max	None	Max	Max	None	None	None	None
Ratio	0.04	0.69	0.08	0.24	0.45	0.01	0.32	0.31	0.11	0.20
ntrol Delay	2.9	13.2	2.3	5.1	7.4	0.0	46.6	17.1	41.5	18.8
eue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
al Delay	2.9	13.2	2.3	5.1	7.4	0.0	46.6	17.1	41.5	18.8
eue Length 50th (m)	0.5	106.6	0.5	1.8	35.4	0.0	7.9	1.3	2.2	0.7
eue Length 95th (m)	2.0	154.0	6.1	4.9	83.0	0.0	18.7	13.9	7.8	10.0
ernal Link Dist (m)		440.7			446.3			949.6		204.9
n Bay Length (m)	40.0		22.0	42.0		51.0	20.0		14.0	
se Capacity (vph)	530	2442	1137	389	2591	1236	377	488	310	432
rvation Cap Reductr	ח 0	0	0	0	0	0	0	0	0	0
illback Cap Reductn	0	0	0	0	0	0	0	0	0	
rage Cap Reductn	0	0	0	0	0	0	0	0	0	0
duced v/c Ratio	0.03	0.69	0.08	0.14	0.45	0.01	0.11	0.14	0.04	0.08
ersection Summary										
cle Length: 119.6										
tuated Cycle Length:	92.8									
tural Cycle: 90										
ontrol Type: Semi Act	-Uncoor	d								
olits and Phases: 2:	· Moonli	aht Ave	& Kings	swav						
	I	<u></u>	~							

₫ <i>ø</i> 2	√ Ø3	₩Ø4
31.7 s	20 s	67.9 s
	▶ Ø7	
31.7 s	20 s	67.9 s

Estelle Street Development 2: Moonlight Ave & Kingsway

	≯	-	\mathbf{r}	4	+	•	•	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኘ	††	1	٦	^	1	۲	¢Î		٦	eî 👘	
Traffic Volume (vph)	15	1527	78	51	1070	11	39	6	55	11	4	29
Future Volume (vph)	15	1527	78	51	1070	11	39	6	55	11	4	29
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7		6.7	6.7	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.87		1.00	0.87	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1687	3471	1583	1736	3438	1615	1805	1645		1530	1512	
FIt Permitted	0.22	1.00	1.00	0.09	1.00	1.00	0.73	1.00		0.71	1.00	
Satd. Flow (perm)	396	3471	1583	166	3438	1615	1394	1645		1149	1512	
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	16	1678	86	56	1176	12	43	7	60	12	4	32
RTOR Reduction (vph)	0	0	26	0	0	4	0	56	0	0	30	0
Lane Group Flow (vph)	16	1678	60	56	1176	8	43	11	0	12	6	0
Heavy Vehicles (%)	7%	4%	2%	4%	5%	0%	0%	0%	0%	18%	0%	10%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8		8	2			6		
Actuated Green, G (s)	67.9	65.6	65.6	73.1	68.2	68.2	7.3	7.3		7.3	7.3	
Effective Green, g (s)	67.9	65.6	65.6	73.1	68.2	68.2	7.3	7.3		7.3	7.3	
Actuated g/C Ratio	0.70	0.67	0.67	0.75	0.70	0.70	0.07	0.07		0.07	0.07	
Clearance Time (s)	5.0	7.9	7.9	5.0	7.9	7.9	6.7	6.7		6.7	6.7	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	306	2337	1066	203	2407	1130	104	123		86	113	
v/s Ratio Prot	0.00	c0.48		c0.01	c0.34			0.01			0.00	
v/s Ratio Perm	0.04		0.04	0.19		0.01	c0.03			0.01		
v/c Ratio	0.05	0.72	0.06	0.28	0.49	0.01	0.41	0.09		0.14	0.06	
Uniform Delay, d1	4.6	10.1	5.4	7.3	6.7	4.4	43.0	42.0		42.1	41.9	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.1	1.9	0.1	0.7	0.7	0.0	2.7	0.3		0.7	0.2	
Delay (s)	4.7	12.0	5.5	8.1	7.4	4.4	45.7	42.3		42.9	42.1	
Level of Service	A	В	A	A	A	A	D	D		D	D	
Approach Delay (s)		11.6			7.4			43.6			42.3	
Approach LOS		В			A			D			D	
Intersection Summary									_			
HCM 2000 Control Dela			11.5	ŀ	ICM 20	00 Leve	l of Serv	/ice	В			
HCM 2000 Volume to C		ratio	0.66									
Actuated Cycle Length			97.4		Sum of l				19.6			
Intersection Capacity U	tilization		63.4%		CU Lev	el of Sei	rvice		В			
Analysis Period (min)			15									
c Critical Lane Group												

Estelle Street Development 3: Bancfroft Dr & Levesque St

	≯	-	+	•	1	~	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		र्स	ef 👘		Y		
Traffic Volume (veh/h)	146	133	65	25	61	222	
Future Volume (Veh/h)	146	133	65	25	61	222	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80	
Hourly flow rate (vph)	183	166	81	31	76	278	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	112				628	96	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	112				628	96	
tC, single (s)	4.1				6.5	6.2	
tC, 2 stage (s)							
tF (s)	2.2				3.6	3.3	
p0 queue free %	88				80	71	
cM capacity (veh/h)	1490				383	963	
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	349	112	354				
Volume Left	183	0	76				
Volume Right	0	31	278				
cSH	1490	1700	727				
Volume to Capacity	0.12	0.07	0.49				
Queue Length 95th (m)	3.4	0.0	21.5				
Control Delay (s)	4.6	0.0	14.6				
Lane LOS	А		В				
Approach Delay (s)	4.6	0.0	14.6				
Approach LOS			В				
Intersection Summary							
Average Delay			8.3				
Intersection Capacity Uti	ilization		45.5%	10	CU Leve	l of Servi	e
Analysis Period (min)			15				
			.0				

Estelle Street DevelopmentHCM Unsignalized Intersection Capacity Analysis4: Moonlight Beach Rd/Moonlight Ave & Bancfroft DrTotal (2029) PM Peak Hour

	۶	→	$\mathbf{\hat{z}}$	4	-	•	1	1	۲	5	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			4			\$			÷	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	60	114	2	3	56	9	8	6	3	38	3	35
Future Volume (vph)	60	114	2	3	56	9	8	6	3	38	3	35
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Hourly flow rate (vph)	70	133	2	3	65	10	9	7	3	44	3	41
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	205	78	19	88								
Volume Left (vph)	70	3	9	44								
Volume Right (vph)	2	10	3	41								
Hadj (s)	0.06	-0.07	0.00	-0.10								
Departure Headway (s)	4.3	4.3	4.6	4.5								
Degree Utilization, x	0.24	0.09	0.02	0.11								
Capacity (veh/h)	815	796	718	750								
Control Delay (s)	8.7	7.7	7.8	8.0								
Approach Delay (s)	8.7	7.7	7.8	8.0								
Approach LOS	А	А	А	А								
Intersection Summary												
Delay			8.3									
Level of Service			А									
Intersection Capacity Uti	lization		28.5%	[(CU Leve	el of Ser	vice		А			
Analysis Period (min)			15									

А

Intersection	

Intersection Delay, s/veh 8.3 Intersection LOS

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			÷			÷			\$	
Traffic Vol, veh/h	60	114	2	3	56	9	8	6	3	38	3	35
Future Vol, veh/h	60	114	2	3	56	9	8	6	3	38	3	35
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	3	0	7
Mvmt Flow	70	133	2	3	65	10	9	7	3	44	3	41
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Rig	ht NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	8.7			7.7			7.8			8		
HCM LOS	Α			А			А			А		

Lane	NBLn1	EBLn1V	VBLn1	SBLn1	
Vol Left, %	47%	34%	4%	50%	
Vol Thru, %	35%	65%	82%	4%	
Vol Right, %	18%	1%	13%	46%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	17	176	68	76	
LT Vol	8	60	3	38	
Through Vol	6	114	56	3	
RT Vol	3	2	9	35	
Lane Flow Rate	20	205	79	88	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.025	0.239	0.094	0.109	
Departure Headway (Hd)	4.627	4.212	4.293	4.431	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	777	839	838	813	
Service Time	2.634	2.306	2.303	2.436	
HCM Lane V/C Ratio	0.026	0.244	0.094	0.108	
HCM Control Delay	7.8	8.7	7.7	8	
HCM Lane LOS	A	А	Α	А	
HCM 95th-tile Q	0.1	0.9	0.3	0.4	

	≯	+	Ļ	•	1	~		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		र्स	eî		Y			
Traffic Volume (veh/h)	12	182	83	5	3	2		
Future Volume (Veh/h)	12	182	83	5	3	2		
Sign Control		Free	Free		Stop			
Grade		0%	0%		0%			
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94		
Hourly flow rate (vph)	13	194	88	5	3	2		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type		None	None					
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	93				310	90		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	93				310	90		
tC, single (s)	4.1				6.4	6.2		
tC, 2 stage (s)								
tF (s)	2.2				3.5	3.3		
p0 queue free %	99				100	100		
cM capacity (veh/h)	1514				680	973		
Direction, Lane #	EB 1	WB 1	SB 1					
Volume Total	207	93	5					
Volume Left	13	0	3					
Volume Right	0	5	2					
cSH	1514	1700	773					
Volume to Capacity	0.01	0.05	0.01					
Queue Length 95th (m)	0.2	0.0	0.2					
Control Delay (s)	0.5	0.0	9.7					
Lane LOS	А		А					
Approach Delay (s)	0.5	0.0	9.7					
Approach LOS			А					
Intersection Summary								
Average Delay			0.5					
Intersection Capacity Ut	ilization		26.9%	10	CU Leve	el of Servi	се	А
Analysis Period (min)			15					-

t ~ ٠ Ť ٠ ↘ EBL EBR NBL NBT SBT Movement SBR Y **₽** 4 Lane Configurations đ Traffic Volume (veh/h) 7 2 15 10 1 Future Volume (Veh/h) 7 2 15 10 1 4 Sign Control Stop Free Free Grade 0% 0% 0% 0.92 0.92 0.92 0.92 0.92 0.92 Peak Hour Factor Hourly flow rate (vph) 8 1 2 16 4 11 Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh) None None Median type Median storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume 30 10 15 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 30 10 15 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) 2.2 3.5 3.3 tF (s) p0 queue free % 99 100 100 cM capacity (veh/h) 989 1078 1616 NB 1 Direction, Lane # EB 1 SB 1 Volume Total 9 18 15 Volume Left 8 2 0 1 0 11 Volume Right 1700 cSH 998 1616 Volume to Capacity 0.01 0.00 0.01 Queue Length 95th (m) 0.2 0.0 0.0 Control Delay (s) 8.6 0.8 0.0 Lane LOS А А Approach Delay (s) 8.6 0.8 0.0 Approach LOS A Intersection Summary Average Delay 2.2 13.3% Intersection Capacity Utilization ICU Level of Service А Analysis Period (min) 15

	≯	\mathbf{F}	1	1	Ļ	~		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	- M			र्भ	eî 👘			
Traffic Volume (veh/h)	24	3	5	17	11	38		
Future Volume (Veh/h)	24	3	5	17	11	38		
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	26	3	5	18	12	41		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type				None	None			
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	60	32	53					
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	60	32	53					
tC, single (s)	6.4	6.2	4.1					
tC, 2 stage (s)	••••							
tF (s)	3.5	3.3	2.2					
p0 queue free %	97	100	100					
cM capacity (veh/h)	948	1047	1566					
,								
Direction, Lane # Volume Total	EB 1 29	NB 1 23	SB 1 53					
Volume Left	29	23 5	0					
Volume Right	20	0	41					
cSH	957	1566	1700					
Volume to Capacity	0.03	0.00	0.03					
Queue Length 95th (m)	0.03	0.00	0.03					
Control Delay (s)	8.9	1.6	0.0					
Lane LOS	A	A	0.0					
Approach Delay (s)	8.9	1.6	0.0					
Approach LOS	A							
Intersection Summary								
Average Delay			2.8					
Intersection Capacity Uti	lization		15.2%	l	CU Leve	el of Servio	ce	А
Analysis Period (min)			15					

Queues Total (2029) AM Peak Hour (Double EBL)

	≯	→	\mathbf{r}	4	+	•	1	Ť	1	ţ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	- ከከ	- ††	1	- ሽ	- † †	1	ሻ	1	ሻ	↑	1	
Traffic Volume (vph)	185	467	123	130	1139	163	367	111	59	31	44	
Future Volume (vph)	185	467	123	130	1139	163	367	111	59	31	44	
Lane Group Flow (vph)	206	519	137	144	1266	181	408	261	66	34	49	
Turn Type	Prot	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	NA	Perm	
Protected Phases	7	4		3	8		5	2		6		
Permitted Phases			4	8		8	2		6		6	
Detector Phase	7	4	4	3	8	8	5	2	6	6	6	
Switch Phase												
Minimum Initial (s)	4.5	30.0	30.0	5.0	30.0	30.0	4.5	8.0	8.0	8.0	8.0	
Minimum Split (s)	9.0	37.9	37.9	9.0	37.9	37.9	9.0	27.8	27.8	27.8	27.8	
Total Split (s)	13.0	61.0	61.0	9.0	57.0	57.0	27.0	55.0	28.0	28.0	28.0	
Total Split (%)		48.8%		7.2%			21.6%			22.4%		
Yellow Time (s)	3.0	5.9	5.9	3.0	5.9	5.9	3.0	3.6	3.6	3.6	3.6	
All-Red Time (s)	1.0	2.0	2.0	1.0	2.0	2.0	1.0	3.2	3.2	3.2	3.2	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.0	7.9	7.9	4.0	7.9	7.9	4.0	6.8	6.8	6.8	6.8	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead		Lag	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	
Recall Mode	None	Max	Max	None	Max	Max	None	None	None	None	None	
v/c Ratio	0.77	0.33	0.16	0.29	0.85	0.24	0.83	0.46	0.53	0.16	0.18	
Control Delay	71.5	20.5	3.9	14.9	36.7	10.9	47.0	26.2	64.9	48.4	1.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	71.5	20.5	3.9	14.9	36.7	10.9	47.0	26.2	64.9	48.4	1.4	
Queue Length 50th (m)	25.3	40.8	0.0	15.3	143.8	11.1	79.8	37.8	15.2	7.5	0.0	
Queue Length 95th (m)	#48.1	59.6	11.9	28.8	#206.3	28.5	113.6	61.5	30.5	17.5	0.0	
Internal Link Dist (m)		516.5			440.7			737.0		303.0		
Turn Bay Length (m)	59.0		94.0	30.0		1.0	100.0		75.0			
Base Capacity (vph)	269	1577	841	496	1486	761	506	771	215	361	398	
Starvation Cap Reductn	ı 0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.77	0.33	0.16	0.29	0.85	0.24	0.81	0.34	0.31	0.09	0.12	
Intersection Summary												
Cycle Length: 125												
Actuated Cycle Length:	112.5											
Natural Cycle: 85												
Control Type: Semi Act-Uncoord												
# 95th percentile volu	me exce	eeds ca	pacity, c	ueue n	nav be lo	onger.						

95th percentile volume exceeds capacity, queue may be longer. # Queue shown is maximum after two cycles.

Splits and Phases: 1: Levesque St/Street 'C' & Kingsway

↑ Ø2		√ Ø3	₩ Ø4
55 s		9 s	61s
▲ Ø5		▶ ø7	
27 s	28 s	13 s	57 s

JD Engineering

HCM Signalized Interse	ection Capaci	ty Analysis	;
Total (2029)	AM Peak Hour (Double EBL)

$\not \rightarrow \rightarrow \not \leftarrow \neg \land \uparrow \not \land \downarrow \not \rightarrow \downarrow$	-
Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT	SBR
Lane Configurations እካ 朴 🕇 ካ ተተ 🎢 ካ 🖡 👌	1
Traffic Volume (vph) 185 467 123 130 1139 163 367 111 124 59 31	44
Future Volume (vph) 185 467 123 130 1139 163 367 111 124 59 31	44
Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 190	1900
Total Lost time (s) 4.0 7.9 7.9 4.0 7.9 4.0 6.8	6.8
Lane Util. Factor 0.97 0.95 1.00 <td>1.00</td>	1.00
Frt 1.00 1.00 0.85 1.00 0.85 1.00 0.92 1.00 1.00	0.85
Flt Protected 0.95 1.00 1.00 0.95 1.00	1.00
Satd. Flow (prot) 3335 3312 1615 1805 3374 1599 1787 1713 1805 1900	1615
Flt Permitted 0.95 1.00 1.00 0.46 1.00 1.00 0.53 1.00 0.60 1.00	1.00
Satd. Flow (perm) 3335 3312 1615 874 3374 1599 999 1713 1136 1900	1615
Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	0.90
Adj. Flow (vph) 206 519 137 144 1266 181 408 123 138 66 34	49
RTOR Reduction (vph) 0 0 72 0 0 58 0 36 0 0 0	45
Lane Group Flow (vph) 206 519 65 144 1266 123 408 225 0 66 34	4
Heavy Vehicles (%) 5% 9% 0% 0% 7% 1% 1% 0% 4% 0% 0%	0%
Turn Type Prot NA Perm pm+pt NA Perm NA	Perm
Protected Phases 7 4 3 8 5 2 6	
Permitted Phases 4 8 8 2 6	6
Actuated Green, G (s) 9.1 53.7 53.7 54.6 49.6 49.6 36.6 36.6 10.4 10.4	10.4
Effective Green, g (s) 9.1 53.7 53.7 54.6 49.6 49.6 36.6 36.6 10.4 10.4	10.4
Actuated g/C Ratio 0.08 0.47 0.47 0.48 0.44 0.44 0.32 0.32 0.09 0.09	0.09
Clearance Time (s) 4.0 7.9 7.9 4.0 7.9 6.8	6.8
Vehicle Extension (s) 3.0	3.0
Lane Grp Cap (vph) 266 1560 760 459 1467 695 474 549 103 173	147
v/s Ratio Prot c0.06 0.16 0.01 c0.38 c0.17 0.13 0.02	0.00
v/s Ratio Perm 0.04 0.14 0.08 c0.11 0.06	0.00
v/c Ratio 0.77 0.33 0.08 0.31 0.86 0.18 0.86 0.41 0.64 0.20	0.03
Uniform Delay, d1 51.4 18.9 16.6 16.8 29.1 19.7 34.3 30.3 50.0 47.9 Description Feature 1.00 1	47.2
Progression Factor 1.00 <td>1.00</td>	1.00
Incremental Delay, d2 13.1 0.6 0.2 0.4 6.9 0.6 14.7 0.5 12.8 0.6 Delay (s) 64.6 19.5 16.8 17.2 36.1 20.3 49.0 30.8 62.8 48.5	0.1
Delay (s) 64.6 19.5 16.8 17.2 36.1 20.3 49.0 30.8 62.8 48.5 Level of Service E B B D C D C E D	47.3 D
Approach Delay (s) 29.8 32.6 41.9 54.4	D
Approach LOS C C D D	
Intersection Summary	
HCM 2000 Control Delay 34.8 HCM 2000 Level of Service C	
HCM 2000 Volume to Capacity ratio 0.88	
Actuated Cycle Length (s) 114.0 Sum of lost time (s) 22.7	
Intersection Capacity Utilization 82.7% ICU Level of Service E	
Analysis Period (min) 15	
c Critical Lane Group	

Queues Total (2029) PM Peak Hour (Double EBL)

	٦	-	\mathbf{r}	4	+	×.	1	Ť	1	ţ	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	ካካ	- † †	1	ሻ		1	٦	el 👘	٦	•	1	
Traffic Volume (vph)	86	1277	308	92	886	41	128	25	135	95	286	
Future Volume (vph)	86	1277	308	92	886	41	128	25	135	95	286	
Lane Group Flow (vph)	91	1359	328	98	943	44	136	176	144	101	304	
Turn Type	Prot	NA	Perm	pm+pt		Perm	Perm	NA	Perm	NA	Perm	
Protected Phases	7	4		3	8			2		6		
Permitted Phases			4	8		8	2		6		6	
Detector Phase	7	4	4	3	8	8	2	2	6	6	6	
Switch Phase												
Minimum Initial (s)	4.5	30.0	30.0	5.0	30.0	30.0	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	9.0	37.9	37.9	9.0	37.9	37.9	27.8	27.8	27.8	27.8	27.8	
Total Split (s)	9.0	67.9	67.9	16.0	74.9	74.9	31.8	31.8	31.8	31.8	31.8	
Total Split (%)	7.8%	58.7%	58.7%	13.8%	64.7%	64.7%	27.5%	27.5%	27.5%	27.5%	27.5%	
Yellow Time (s)	3.0	5.9	5.9	3.0	5.9	5.9	3.6	3.6	3.6	3.6	3.6	
All-Red Time (s)	1.0	2.0	2.0	1.0	2.0	2.0	3.2	3.2	3.2	3.2	3.2	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.0	7.9	7.9	4.0	7.9	7.9	6.8	6.8	6.8	6.8	6.8	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes						
Recall Mode	None	Max	Max	None	Max	Max	None	None	None	None	None	
v/c Ratio	0.56	0.66	0.31	0.37	0.44	0.04	0.60	0.44	0.81	0.31	0.69	
Control Delay	66.5	18.0	2.2	9.0	12.4	0.9	52.7	12.9	75.3	41.5	23.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	66.5	18.0	2.2	9.0	12.4	0.9	52.7	12.9	75.3	41.5	23.3	
Queue Length 50th (m)	10.6	102.7	0.0	5.7	57.1	0.0	28.6	5.2	31.5	20.1	21.4	
Queue Length 95th (m)	#21.8	147.7	13.2	12.5	81.2	2.0	49.5	24.4	#58.5	36.1	52.3	
Internal Link Dist (m)		516.5			440.7			737.0		303.0		
Turn Bay Length (m)	59.0		94.0	30.0		1.0	100.0		75.0			
Base Capacity (vph)	162	2072	1062	334	2152	1039	304	489	238	439	526	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.56	0.66	0.31	0.29	0.44	0.04	0.45	0.36	0.61	0.23	0.58	

Intersection Summary

Cycle Length: 115.7

Actuated Cycle Length: 108.5

Natural Cycle: 75

Control Type: Semi Act-Uncoord

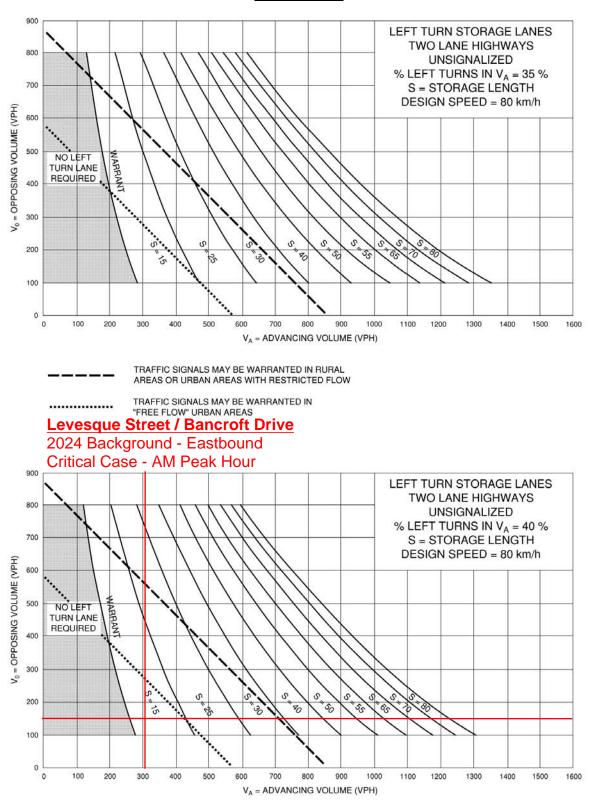
95th percentile volume exceeds capacity, queue may be longer. # Queue shown is maximum after two cycles.

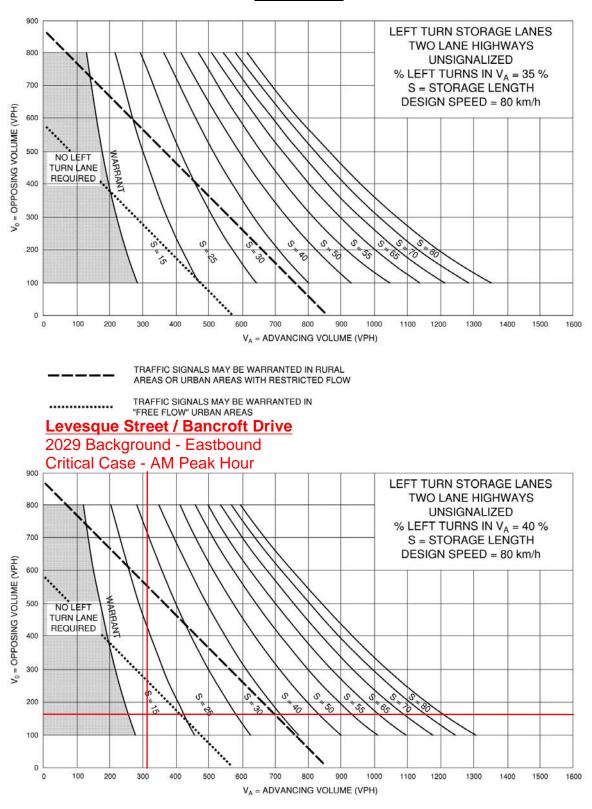
Splits and Phases: 1: Levesque St/Street 'C' & Kingsway

≪¶ ø2	Ø3	▼ Ø4
31.8 s	16 s	67.9 s
∲ _Ø6	→ Ø7	3
31.8 s	9s 74.9s	

JD Engineering

Synchro 10 Report 03-05-2021


HCM Signalized Inters	section Capaci	ty Analysis	
Total (2029)) PM Peak Hour ((Double EBL)	


	۶	-	\mathbf{r}	4	-	•	1	1	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	<u>††</u>	1	۲	- ††	1	٦	eî 👘		۳	↑	1
Traffic Volume (vph)	86	1277	308	92	886	41	128	25	140	135	95	286
Future Volume (vph)	86	1277	308	92	886	41	128	25	140	135	95	286
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	7.9	7.9	4.0	7.9	7.9	6.8	6.8		6.8	6.8	6.8
Lane Util. Factor	0.97	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.87		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	3502	3539	1583	1736	3438	1615	1805	1618		1805	1900	1615
Flt Permitted	0.95	1.00	1.00	0.13	1.00	1.00	0.69	1.00		0.54	1.00	1.00
Satd. Flow (perm)	3502	3539	1583	230	3438	1615	1314	1618		1031	1900	1615
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	91	1359	328	98	943	44	136	27	149	144	101	304
RTOR Reduction (vph)	0	0	135	0	0	17	0	123	0	0	0	164
Lane Group Flow (vph)	91	1359	193	98	943	27	136	53	0	144	101	140
Heavy Vehicles (%)	0%	2%	2%	4%	5%	0%	0%	0%	3%	0%	0%	0%
Turn Type	Prot	NA	Perm	pm+pt	NA	Perm	Perm	NA		Perm	NA	Perm
Protected Phases	7	4		3	8			2			6	
Permitted Phases			4	8		8	2			6		6
Actuated Green, G (s)	3.9	64.5	64.5	75.4	68.0	68.0	18.8	18.8		18.8	18.8	18.8
Effective Green, g (s)	3.9	64.5	64.5	75.4	68.0	68.0	18.8	18.8		18.8	18.8	18.8
Actuated g/C Ratio	0.04	0.59	0.59	0.69	0.62	0.62	0.17	0.17		0.17	0.17	0.17
Clearance Time (s)	4.0	7.9	7.9	4.0	7.9	7.9	6.8	6.8		6.8	6.8	6.8
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	124	2086	933	260	2136	1003	225	278		177	326	277
v/s Ratio Prot	c0.03	c0.38		c0.03	0.27			0.03			0.05	
v/s Ratio Perm			0.12	0.23		0.02	0.10			c0.14		0.09
v/c Ratio	0.73	0.65	0.21	0.38	0.44	0.03	0.60	0.19		0.81	0.31	0.51
Uniform Delay, d1	52.2	15.0	10.5	9.6	10.8	8.0	41.9	38.8		43.6	39.6	41.1
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	20.0	1.6	0.5	0.9	0.7	0.1	4.5	0.3		24.0	0.5	1.5
Delay (s)	72.2	16.6	11.0	10.5	11.5	8.0	46.4	39.1		67.6	40.2	42.5
Level of Service	E	В	В	В	В	A	D	D		E	D	D
Approach Delay (s)		18.4			11.2			42.3			48.7	
Approach LOS		В			В			D			D	
Intersection Summary												
HCM 2000 Control Delay	,		22.8	F	ICM 20	00 Leve	l of Ser\	vice	С			
HCM 2000 Volume to Ca		ratio	0.67									
Actuated Cycle Length (,		109.4			ost time			18.7			
Intersection Capacity Ut	lization		79.1%	[(CU Leve	el of Ser	vice		D			
Analysis Period (min)			15									
c Critical Lane Group												

Estelle Street Development Tulloch Engineering Inc. JDE-20112 Date: March 5th, 2021

Appendix G – MTO Left Turn Analysis

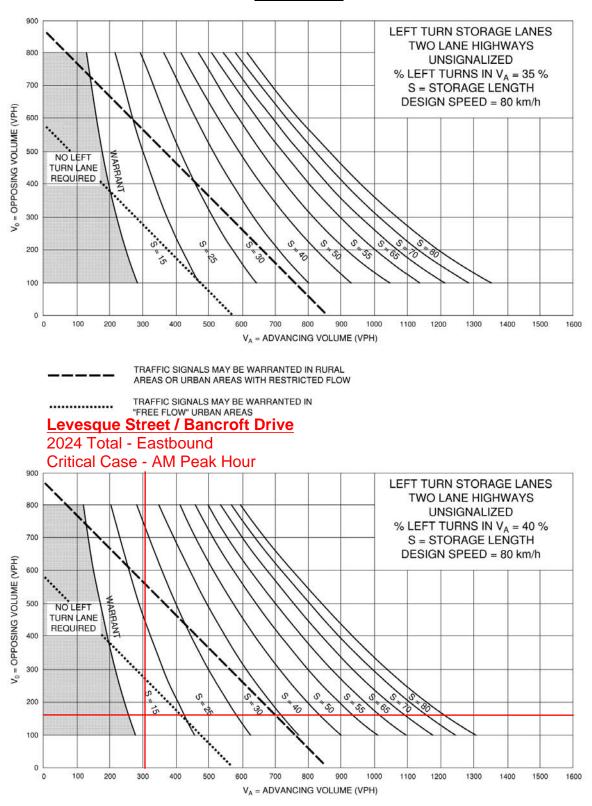
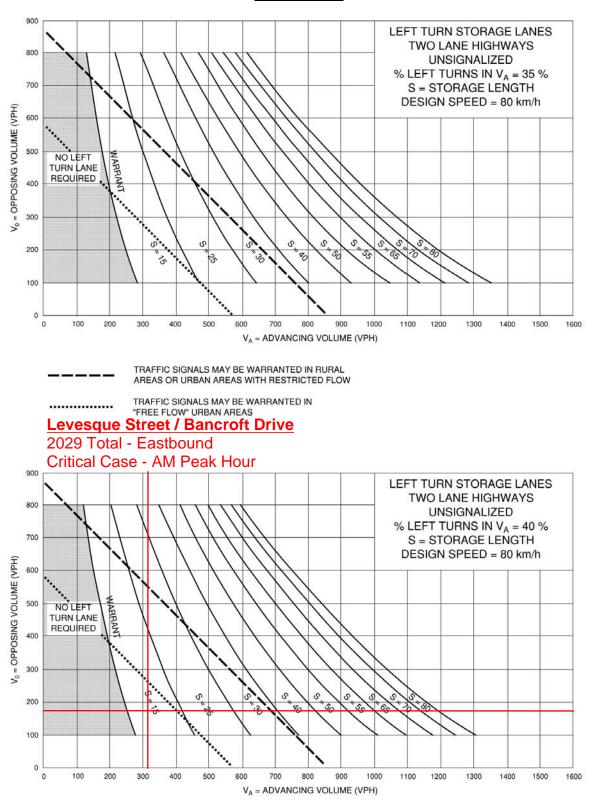



Exhibit 9A-17

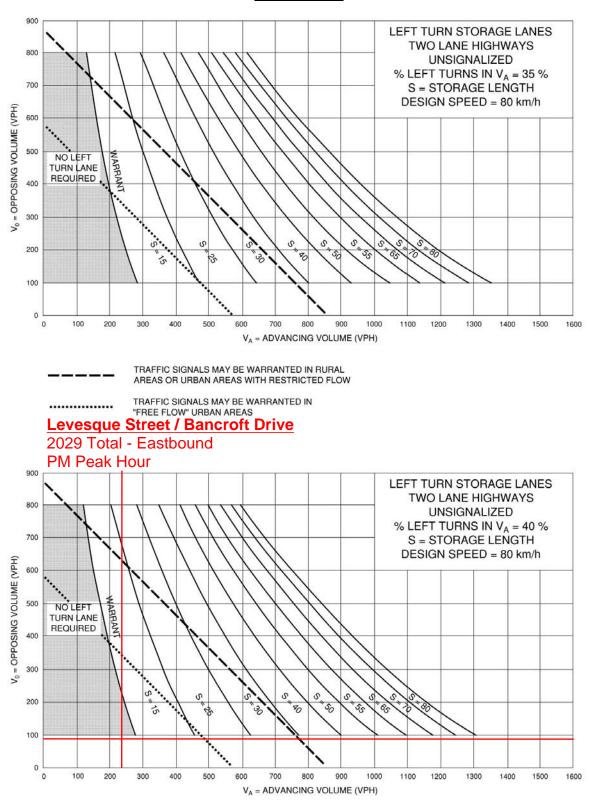
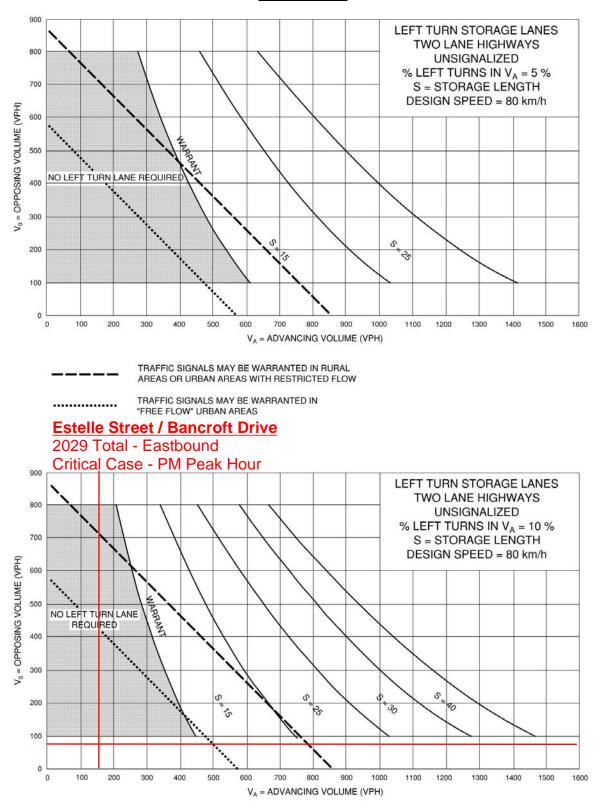
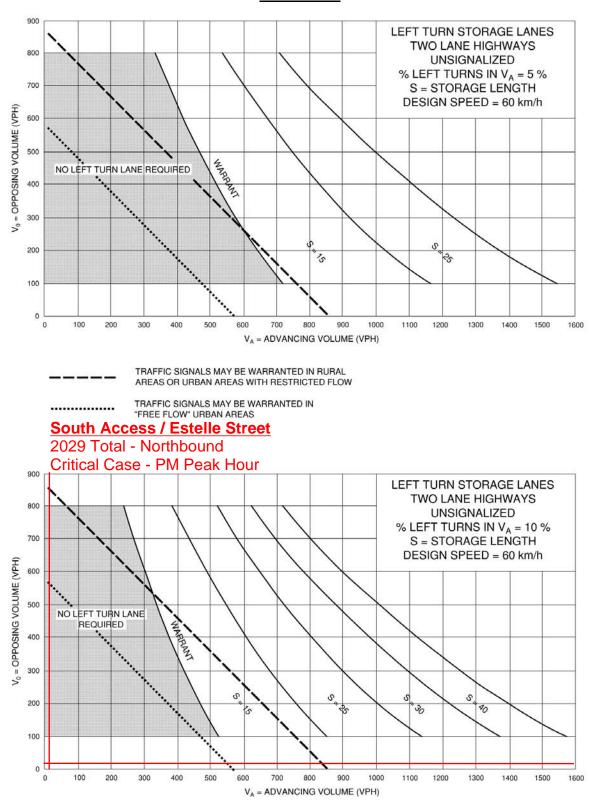




Exhibit 9A-17

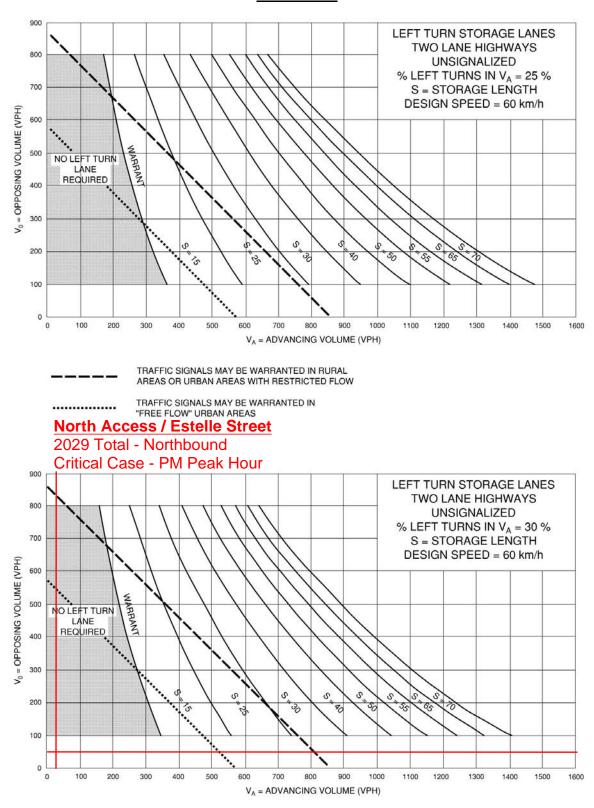


Exhibit 9A-8

Estelle Street Development Tulloch Engineering Inc. JDE-20112 Date: March 5th, 2021

Appendix H – OTM Signal Justification Sheets

Levesque Street / Bancroft Drive

			(Compliance)	Signal	Underground
Justification	Description		Sectional		Entire %	Warrant	Provisions
		Rest. Flow	Numerical	%		wanan	Warrant
	A. Vehicle volume, all aproaches						
1. Minimum Vehicluar	(average hour)	720	334	46%	39%	NO	NO
Volume	B. Vehicle volume, along minor streets				39%		
	(average hour)	255	120	47%		NO	NO
	A. Vehicle volume, major street						
	(average hour)	720	190	26%		NO	NO
2. Delay to cross traffic	B. Combined vehicle and pedestrian				22%		
	volume crossing artery from minor						
	streets (average hour)	75	23	31%		NO	NO

Moonlight Avenue & Moonlight Beach Road / Bancroft Drive

			(Compliance	;	Signal	Underground
Justification	Description		Sectional		Entire %	Warrant	Provisions
		Rest. Flow	Numerical	%		wanan	Warrant
	A. Vehicle volume, all aproaches						
1. Minimum Vehicluar	(average hour)	720	146	20%	17%	NO	NO
Volume	B. Vehicle volume, along minor streets				1770		
	(average hour)	170	35	21%		NO	NO
	A. Vehicle volume, major street						
	(average hour)	720	101	14%		NO	NO
2. Delay to cross traffic	B. Combined vehicle and pedestrian				12%		
	volume crossing artery from minor						
	streets (average hour)	75	18	24%		NO	NO

Estelle Street / Bancroft Drive

			Compliance Sectional Entire %		Signal	Underground	
Justification	Description				Entiro %	Signal Warrant	Provisions
		Rest. Flow	Numerical	%	Entire %	Wallani	Warrant
1. Minimum Vehicluar Volume	A. Vehicle volume, all aproaches						
	(average hour)	720	133	19%	2%	NO	NO
	B. Vehicle volume, along minor streets				270		
	(average hour)	255	5	2%		NO	NO
2. Delay to cross traffic	A. Vehicle volume, major street						
	(average hour)	720	126	17%		NO	NO
	B. Combined vehicle and pedestrian				1%		
	volume crossing artery from minor						
	streets (average hour)	75	1	2%		NO	NO

Estelle Street / North Access

			Compliance Sectional Entire %		Signal	Underground	
Justification	Description				Entiro %	Signal Warrant	Provisions
		Rest. Flow	Numerical	%	Entire %	Wallani	Warrant
1. Minimum Vehicluar Volume	A. Vehicle volume, all aproaches						
	(average hour)	720	46	6%	4%	NO	NO
	B. Vehicle volume, along minor streets				4%		
	(average hour)	255	18	7%		NO	NO
	A. Vehicle volume, major street						
2. Delay to cross traffic	(average hour)	720	15	2%		NO	NO
	B. Combined vehicle and pedestrian				1%		
	volume crossing artery from minor						
	streets (average hour)	75	16	21%		NO	NO

Estelle Street / South Access

			Compliance Sectional Entire %		Signal	Underground	
Justification	Description				Entiro %	Signal Warrant	Provisions
		Rest. Flow	Numerical	%	Entire 70	Wallani	Warrant
1. Minimum Vehicluar Volume	A. Vehicle volume, all aproaches						
	(average hour)	720	19	3%	1%	NO	NO
	B. Vehicle volume, along minor streets				170		
	(average hour)	255	5	2%		NO	NO
	A. Vehicle volume, major street						
2. Delay to cross traffic	(average hour)	720	11	1%		NO	NO
	B. Combined vehicle and pedestrian				1%		
	volume crossing artery from minor						
	streets (average hour)	75	4	5%		NO	NO

Estelle Street Development Tulloch Engineering Inc. JDE-20112 Date: March 5th, 2021

Appendix I – Parking Survey Data

PARKING COUNTS- GREENBRIAR APARTMENTS

Date: Friday November 20th, 2020

Time: 17:00-21:00

Time	# Passenger Vehicles	Visitor Parking (Passenger Vehicles)	# Commercial Vehicles	Total
17:00 (5:00pm)	85	7	0	92
17:30 (5:30pm)	79	7	0	86
18:00 (6:00pm)	79	8	0	87
18:30 (6:30pm)	82	9	0	91
19:00 (7:00pm)	86	10	0	96
19:30 (7:30pm)	86	8	0	94
20:00 (8:00pm)	87	8	0 (one taxi came)	95
20:30 (8:30pm)	85	9	0	94
21:00 (9:00pm)	84	8	0	92

Date: Saturday November 21st, 2020

Time: 11:00-21:00

Time	# Passenger Vehicles	Visitor Parking (Passenger Vehicles)	# Commercial Vehicles	Total
11:00 (11:00am)	73	8	0	81
11:30 (11:30am)	75	9	0	84
12:00 (12:00pm)	81	8	0	89
12:30 (12:30pm)	78	7	0	85
13:00 (1:00pm)	73	6	0	79
13:30 (1:30pm)	75	8	0	83
14:00 (2:00pm)	77	7	0	84
14:30 (2:30pm)	72	5	0	77
15:00 (3:00pm)	76	10	0	86
15:30 (3:30pm)	73	7	0 (1 taxi) (1 handi transit) (1 tow truck)	80
16:00 (4:00pm)	72	15	0	87
16:30 (4:30pm)	81	13	0	94
17:00 (5:00pm)	88	12	0	100
17:30 (5:30pm)	88	14	0	102
18:00 (6:00pm)	86	14	0	100
18:30 (6:30pm)	82	11	0	93
19:00 (7:00pm)	82	10	0	92
19:30 (7:30pm)	89	10	0	99

20:00 (8:00pm)	89	10	0	99
20:30 (8:30pm)	85	9	0	94
21:00 (9:00pm)	81	6	0	87