

## Energy and Related Costs at Municipal Facilities

| Presented To:   | City Council                             |
|-----------------|------------------------------------------|
| Meeting Date:   | June 10, 2025                            |
| Туре:           | Managers' Reports                        |
| Prepared by:    | Shawn Turner<br>Energy Initiatives       |
| Recommended by: | General Manager of<br>Corporate Services |

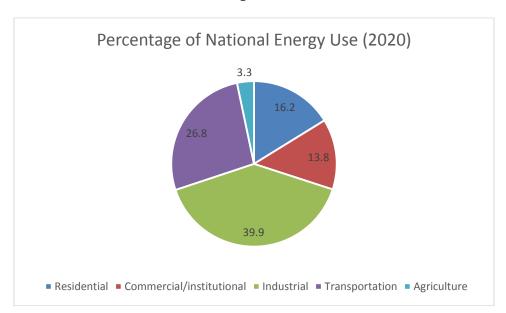
## **Report Summary**

This report provides information regarding energy use and related costs at all municipal facilities as requested by Council through Resolution CC2024-294.

# Relationship to the Strategic Plan, Health Impact Assessment and Climate Action Plans

This report pertains to objective 3.2 (Develop and Strengthen Strategies and Policies to Mitigate Impact of Climate Change) under the "Climate Change" strategic priority by outlining a way to improve climate resilience.

#### **Financial Implications**


There are no financial implications associated with this report.

# Background

The Community Energy and Emissions Plan (CEEP) is the long-term plan to reduce carbon emissions and pollution in Greater Sudbury. It responds to City Council's Climate Emergency declaration in May 2019, which included a commitment to achieve net-zero emissions by 2050. That means reducing greenhouse gas emissions (GHG) caused by human activity to as close to zero as possible and removing remaining emissions from the atmosphere. Similarly, the Government of Canada's 2030 Emissions Reductions Plan outlines a target to cut greenhouse gas (GHG) emissions by 40 percent below 2005 levels by 2030 and achieve net-zero emissions by 2050.

Energy use in Canada can be categorized into 5 sectors – industrial, residential, commercial/institutional, transportation and agriculture. As can be seen in Figure 1 below (Natural Resources Canada), the industrial sector is the largest consumer of energy at approximately 40% followed by transportation (26.8), residential (16.2), commercial/institutional (13.8), and agriculture (3.3).

Figure 1

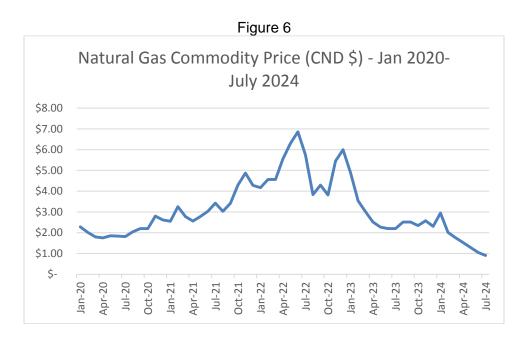


The energy intensity (equivalent kWh consumed per square foot) at City facilities also mirrors this consumption pattern by sector. The City's Water and Wastewater facilities are the largest consumers of energy per square foot, followed by a mix of residential and institutional facilities.

Overall, total energy use at City facilities (excluding housing operations) in 2023 was 109,851,045 equivalent kWh. This was a decrease in consumption of 9.8% from 2022 as evidenced in Figure 2 below. A 14% decline in natural gas consumption was complimented by a 6% and 10% decline in electricity and district energy – hot water. This was partially offset by a 14% increase in district energy- chilled water use.

| Figure 2: All Facilities (excluding housing operations)- Energy Consumption (equivalent kWh) |             |             |             |                      |
|----------------------------------------------------------------------------------------------|-------------|-------------|-------------|----------------------|
| Energy Source                                                                                | 2022        | 2023        | Change      | Percentage<br>Change |
| Electricity                                                                                  | 58,289,600  | 54,877,590  | -3,412,010  | -6%                  |
| Natural gas                                                                                  | 59,421,470  | 51,217,281  | -8,204,189  | -14%                 |
| District energy - Hot<br>water                                                               | 3,613,430   | 3,268,310   | -345,120    | -10%                 |
| District energy -<br>Chilled water                                                           | 427,637     | 487,864     | 60,227      | 14%                  |
| Totals                                                                                       | 121,752,137 | 109,851,045 | -11,901,092 | -10%                 |

Similarly, total energy use at housing operations also declined by 11% in equivalent kWh. Natural gas and electricity consumption declined by 13% and 5% respectively per Figure 3 below.


| Figure 3: Housing Operations- Energy Consumption (equivalent kWh) |            |            |            |                      |
|-------------------------------------------------------------------|------------|------------|------------|----------------------|
| Energy Source                                                     | 2022       | 2023       | Change     | Percentage<br>Change |
| Natural Gas                                                       | 33,059,029 | 28,745,417 | -4,313,612 | -13%                 |
| Electricity                                                       | 8,306,249  | 7,873,017  | -433,232   | -5%                  |
| Totals                                                            | 41,365,278 | 36,618,434 | -4,746,844 | -11%                 |

In most facilities that do not have energy intensive processes (industrial), the demand for energy is primarily for space and water heating (60-70%), with lighting, cooling and appliances comprising the remainder of the energy consumption. Decreased natural gas consumption over the 2022-2023 period are largely explained by the variances in temperatures. The average temperature in 2023 was 1.3 degrees warmer than 2022 and the average low temperature was 5.9 degrees warmer in 2023 resulting in decreased demand for heating. Even though energy utilization was lower in 2023 compared to 2022, energy costs did not decline at the same rate. Figures 4 & 5 below portray the change in costs over this period for city facilities and housing operations respectively.

| Figure 4: All Facilities (excluding housing operations)- Energy Costs |            |            |          |                      |
|-----------------------------------------------------------------------|------------|------------|----------|----------------------|
| Energy Source                                                         | 2022       | 2023       | Change   | Percentage<br>Change |
| Electricity                                                           | 8,279,063  | 7,813,145  | -465,918 | -6%                  |
| Natural gas                                                           | 2,650,967  | 2,559,243  | -91,724  | -3%                  |
| District energy - Hot water                                           | 180,474    | 229,428    | 48,954   | 27%                  |
| District energy - Chilled<br>water                                    | 86,312     | 93,071     | 6,759    | 8%                   |
| Totals                                                                | 11,196,816 | 10,694,887 | -501,929 | -10%                 |

| Figure 5: Housing Operations- Energy Costs |           |           |         |                      |
|--------------------------------------------|-----------|-----------|---------|----------------------|
| Energy Source                              | 2022      | 2023      | Change  | Percentage<br>Change |
| Electricity                                | 1,040,786 | 992,139   | -48,647 | -5%                  |
| Natural gas                                | 1,037,161 | 1,325,592 | 288,431 | 28%                  |
| Totals                                     | 2,077,947 | 2,317,731 | 239,784 | 12%                  |

While electricity costs were in step with the declines in electricity consumption, natural gas costs did not mirror the reduced consumption. This is largely the result of fluctuations in the commodity markets for natural gas. Figure 6 below depicts the commodity price changes in natural gas from January 2020 - July 2024. There were significant increases in the commodity price in 2022 and into 2023. These price increases in the spot market take approximately 6-8 months to be realized at the consumer level. As such, these high prices were felt in the 2023 calendar year.



A comprehensive list of energy consumption and costs can be found in the attached Appendices:

Appendix A – Energy Consumption and Costs- City Facilities (Data summarized according to facility type with graphs depicting energy use and costs)

Appendix B – Energy Consumption and Costs – Greater Sudbury Housing (Data summarized according to facility type with graphs depicting energy use and costs).

#### **Opportunities to Reduce Energy Use**

To reduce energy consumption in a facility, several upgrades can be considered. Upgrades to insulation, windows and doors, lighting, and HVAC systems, along with energy-efficient appliances and renewable energy sources, can significantly impact energy savings. These upgrades not only reduce costs but also contribute to a more sustainable and comfortable environment.

There are cyclical opportunities to address existing infrastructure, such as the natural transition at the end of serviceable life or upgrades due to a change in service or operation. Different types of infrastructure have different degrees of longevity, for example building HVAC systems (moderate longevity) versus their envelopes (high longevity). Increased energy efficiency can be realized by investing in appropriate upgrades during cycles of infrastructure maintenance and renewal. Additionally, the cost/benefit of various types of infrastructure improvements also vary significantly. Lighting and HVAC related upgrades have a more significant financial impact than many other upgrades as they tend to benefit most from technological improvements and ability to "right size". These upgrades tend to reduce energy consumption by 15-30% and have payback periods between 4-10 years.

The City has taken steps to reduce energy consumption at facilities through various upgrades to processes, lighting, replacement of higher efficiency HVAC equipment and investments in renewable energy production and building automation systems. Some examples are illustrated in figure 7 below.

| Figure 7 - Select Fac                                     | ility Refurbishments- Energ                                                                      | y Reductions        | Γ                      |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------|------------------------|
| Description                                               | Locations                                                                                        | Annual<br>kWh Saved | Annual<br>Savings (\$) |
| Replace lighting with efficient LED                       | Arenas, community<br>centers, libraries, TDS,<br>P.M., Parks depots,<br>Transit and parking lots | 2,211,315           | \$287,471              |
| Solar PV installations                                    | Countryside Arena                                                                                | 245,437             | \$80,729               |
| Solar PV installations                                    | Pioneer Manor                                                                                    | 218,431             | \$71,864               |
| Pumps, Blowers, piping systems control system             | Chelmsford WWTP                                                                                  | 454,000             | \$59,060               |
| Pumps, Blowers, piping systems control system             | Coniston WWTP                                                                                    | 87,672              | \$12,274               |
| Pumps, Blowers, piping systems control system             | David Street WTP                                                                                 | 81,883              | \$10,665               |
| Pumps, Blowers, piping systems control system             | Dowling WWTP                                                                                     | 303,300             | \$39,429               |
| UV system, controls, PD pump<br>replacement               | Levack WWTP                                                                                      | 163,024             | \$22,823               |
| HVAC equipment replacement                                | Howard Armstrong Centre                                                                          | 98,800              | \$13,000               |
| Intake and treated water pump, control systems and piping | Wahnapitae WTP                                                                                   | 196,000             | \$64,734               |
| Blowers, clarifier upgrades Piping, pumps, Controls       | Sudbury WWTP                                                                                     | 1,421,670           | \$184,300              |
| Pumps, Blowers, piping systems control system             | Valley East WWTP                                                                                 | 377,030             | \$51,765               |
| Ozone Laundry conversion, heat<br>recovery ventilator     | Pioneer Manor                                                                                    | 1,241,000           | \$27,909               |
| HVAC equipment, heat recovery<br>ventilators              | 1160 Lorne                                                                                       | 4,960               | \$5,544                |
| Chiller head pressure and controls project                | Countryside arena                                                                                | 33,299              | \$4,329                |
| Building Automation Systems                               | TDS, 1160 Lorne, Transit<br>Terminal, Lionel Lalonde<br>Centre                                   | 168,560             | \$23,090               |

Utilizing asset management principles to maximize existing value to facility components and adhere to replacement cycles, the city will continue to replace high energy consuming HVAC equipment with more efficient equipment and add building controls when and where feasible.

#### Further Facility Energy Performance Initiatives

Staff in the Assets and Fleet Services division are working with an energy conservation company to audit and detail an energy reduction project at some of the City's major facilities including Pioneer Manor, Lionel Lalonde Centre, 1120 and 1160 Paris Street. The expectation is that the audit will outline a project scope that will reduce energy consumption, bear a positive financial return on the investment of new HVAC related equipment and the return on investment will be guaranteed by the conservation company. Staff will provide further information upon completion of the audit process.

#### Conclusion

City staff are taking steps in line with Council's CEEP goals to reduce greenhouse gas emissions at City facilities as a part of regular work and project plans. Projects aimed at lighting, renewable energy, plant process improvements, controls and HVAC refurbishments are often the projects that offer the largest return on investment both financially and in energy reduction. Combining these projects with the end of the natural life cycle of existing equipment assists in deriving full value from prior and future investments. The City will continue to use these opportunities to utilize scarce capital funds in the most effective manner to be able to reduce energy consumption while capitalizing on grant opportunities that become available.