Natural Heritage and Water

City of Greater Sudbury Official Plan

Planning Committee February 23, 2015

Natural Heritage Background Study

- ✓ Update from 2005 Study
- ✓ Input from numerous stakeholders
- Ensure that natural heritage information is still valid
- Ensure that policies in Official Plan reflect current Provincial direction
- Official Plan is consistent with the Provincial Policy Statement

Natural Heritage Features

• Species at Risk

• Wetlands

• Significant wildlife habitat

Natural Heritage Features

- Fish habitat
- Areas of Natural and Scientific Interest
- Geological sites of interest
- Ecological recovery sites

Lake Water Quality Model for Greater Sudbury

City of Greater Sudbury Official Plan

Purpose

Technical guidance to Official Plan for unserviced shoreline lots that is:

- ✓ protective of water quality
- ✓ technically sound
- ✓ defensible, and

 ✓ meets the intent of the Provincial Policy Statement

Guidance from MOE Lakeshore Capacity Assessment approach

Phosphorus

- Natural earth element ('P' on the periodic table)
- Limiting nutrient in lakes on boreal shield
- Excess levels can stimulate algal growth
- Loadings from various sources, including septic systems

Phosphorus Trends

- No significant increasing trends.
- Significant decreasing trend in 12 lakes.

Lake	n _{years}	Mean TP _{so} (µg/L)
Bethel	7	36.9
Brodill	7	5.5
Clearwater	6	3.3
Crooked	7	11.2
Gordon	7	9.4
Hanmer	8	4.7
Linton	5	4.8
Little Raft	7	9.6
McFarlane	11	10.7
Ramsey	10	10.8
T (Dill)	8	17.6
Vermilion	8	10.8

Ontario 'Lakecap' Approach

- Modeling lake response to development
- Assumes 100% P input from septic systems
- Limit to number of shoreline septic systems

'Lakecap'

 Translate target concentration of TP = BG+50% to 'development capacity'

Implications:124 homes acceptable125 homes over capacity

 Does model/approach offer this level of precision?

Model Results

- Lakecap model for CGS lakes did not accurately predict Total Phosphorus (TP) concentrations due to multiple sources of error.
- Development recommendations based on specific lake capacities using the model could not be defended due to model accuracy.

Lake Capacity

• These lakes have much capacity

BUT

• Is this desirable ?

Recommended Approach

- Manage the nature of development versus the 'capacity'
- Developed a sensitivity-based lake classification system to inform planning decisions for unserviced shoreline areas
- Report recommendations for policy direction only. Final policies developed by City staff allowing for public consultation.

Watersheds

- Ecologically meaningful scale for planning
- Protect, improve, restore:
 - sensitive surface water features
 - sensitive ground water features
 - hydrologic functions
- Maintain linkages among watershed features

Conclusion

- Official Plan is consistent with the Provincial Policy Statement on natural heritage matters
- Policies on shorelines of lakes and rivers
- Policies on watershed planning

